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Abstract 
New phase unwrapping algorithm is verified for its 
performance in unwrapping the isoclinic parameter. Both 
numerical and experimental photoelastic fringes of the 
circular ring under compression are generated for 
unwrapping. Comparisons between the numerical and 
experimental results show that the phase unwrapping 
algorithm is robust regardless the presence of the 
singularities in the isoclinic map. This shows an advance 
of the phase unwrapping for solving the complex fringe 
patterns. 
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1. Introduction 
In (digital) photoelastic analysis, one has to determine the 
isoclinic parameter, φ, and isochromatic parameter, δ or 
fringe order, N. The former enables the directions of 
principal stresses to be evaluated whereas the latter 
enables the magnitude of the stress difference (σ1 − σ2) to 
be determined.  
     Most of previously published works in the field of 
photoelasticity do success to determine such parameters 
with a reasonable accuracy corresponding to their 
mathematical models of intensity equations associated 
with the types of the polariscope used. Of these methods, 
the circular disk model under a diametric compressive load 
is often used to confirm their performance. This model 
becomes a standard model because it has well-known 
mathematical formulas for determination of both 
parameters which in turn can be used to reconstruct 
theoretically photoelastic fringes. With these theoretical 
fringes, any developed techniques can be examined and 
also qualitative analysis can be done simply. 
     However, the circular disk model has a big limitation. 
That is, this model is not appropriate for fringe order 
numbering as the fringe field is too simple [1]. Some 
various aspects of a general fringe field such as source, 
sink, saddle point, singular point and isotropic point are 
not present, particularly the isotropic point, despite the fact 
that their existence is the main cause of failure in the 
determination of the isoclinic parameter which in turn 
affects the determination of isochromatic one. The reason 
is that, around these points, discontinuities in the form of 
sharp phase jump are present and they would fail those 
previously published methods, which have been tested 
only with the circular disk model, when these methods are 
applied to other models having those points.  
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    With this problem, one should look for other models 
that have those aspects when they are under load to be as 
the new standard model or benchmark problem. 
    One of candidate models is a circular ring under 
diametric compression. The elastic solution of this model 
was proposed by Chianese and Erdlac [2]. By using these 
stress components in the Cartesian coordinates, the 
magnitude and directions of the principal stresses can be 
given. However, it is known that the formula used to 
determine the principal-stress directions provides the 
ambiguity or wrapped results even though it is 
theoretically derived. 
    This work, then, presents the comparison between the 
results obtained from theory and simulation. Furthermore, 
the results given from the simulation are unwrapped using 
the technique recently proposed by Pinit and Umezaki [3] 
such that the parameter involved presents in its physical 
range and, then, compared with the experiment. These 
comparisons are to show that the circular ring can be used 
as a new standard model in photoelasticity and to confirm 
the performance of the phase unwrapping [3]. 
 
2. Generation of Photoelastic Fringe 
The computer generation of the photoelastic fringe pattern 
is based on the use of plane polariscope. Therefore, the 
expressions of the intensity I for both dark- and bright-
field configurations are, respectively, [1] 
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where Ip,λ is the intensity coming out of the polarizer, Nλ is 
the relative or fractional fringe order for a given primary 
wavelength λ, φ is the isoclinic parameter or the angle 
between σ1 direction and the reference axis (horizontal 
axis), θ is the induced phase-shifted angle and Ib,λ is the 
background intensity. These two equations play a major 
role in determination of photoelatic parameters. 
 

2.1 Conditions for fringe generation 
For fringe generation according to Eq. (1) or (2), the 
following two conditions are assumed, i.e., 
 

• Ip,λ is set to be equal to the maximum gray level 
value of the hardware used. In this work, 256-
shaded gray level is used; thus, Ip,λ = 255. 
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Fig. 1. Geometrical shape of the circular ring and the 
applied compressive load (P = 274 N) exerted along the 
vertical diametral line. The black and white arrows show 
the points of applied load and of reaction, respectively. 
(Geometrical unit: mm, image not to scale.) 

 
• Ib,λ = 0. Since Ip,λ  is only the dc or constant term 

of the signal, its effect is only to force the 
intensity profile upwards. Then, it can be of any 
value as long as the value of intensity Iλ does not 
exceed Ip,λ. In this work, for simplicity, it is set as 
shown. 
 

2.2 Acquisition of N and φ 
For fringe order Nλ, it can be obtained from the well 
known relation [1] 
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where fσ,λ is the material stress fringe value obtained from 
calibration. The Cartesian stress components σxx, σyy and 
τxy can be given from reference [2]. The angle φ is 
theoretically expressed as the following relation [4] 
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The subscript ∠σ1,σ2 denotes that φ map can refer to either 
σ1 or σ2 direction. It is informative to note that even 
though Eq. (4) is theoretically derived, ambiguity for 
which the computed φ value represents the direction of σ1 

or σ2 still exists. Equation (4) can also be found on many 
standard text books of Strength of Materials but 
descriptions relating to the formation of singularities 
caused by the stress components in Eq. (4) can be found in 
reference [4]. 
 
3. Computation of Isoclinic Parameter 
The equation for numerically determining the isoclinic 
parameter φ  using the computer generated photoelastic  
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Fig. 2. Computer generated color photoelastic fringe 
pattern obtained using Eqs. (1), (3) and (4) using the 
Cartesian stress components σxx, σyy and τxy obtained from 
the analytic solution. (a) fringe pattern of I1,λ (θ  = 0), (b) 
fringe pattern of I2,λ (θ  = π/8), (c) fringe pattern of I3,λ (θ 
= π/4), and (d) fringe pattern of I4,λ (θ  = 3π /8). 
 
 
fringe patterns obtained on the basis of four-step color 
phase shifting technique is expressed as [3,5] 
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Equation (5) mathematically gives            ∈ [0, +π/4] due 
to the use of the (ordinary) arctangent function and this 
wrapped phase range is termed as the base-wrapped phase 
range [3]. Note that (a, b] represents a < x ≤ b in which x 
is a variable of interest. Furthermore, 
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Detail about the normalization of values given from Eq. 
(6) before substituting into Eq. (5) can be found in 
references [3,5]. Note that in mathematical sense, Eq. (5) 
is valid only if             . However, for the experimental 
data, this is not true. Equation (5) is invalid when            .    
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Fig. 3. Results obtained from theory and simulation. (a) 
theoretical map of wrapped isoclinic computed using Eq. 
(4),       ∈ (−π/4, +π/4], (b) modulation intensity map 
obtained from       expressed in Eq. (7) associated with the 
number of wavelengths used (λ = R, G, B, (c) map of    
           ∈ [0, +π/4] given from Eq. (5), (d) map of        
           ∈ [0, +π/2], and (e) map of           ∈ (−π/4, +π/4]. 
(d) and (e) were obtained from (c) using the simple logic 
operations (comparison of intensity). Note that their values 
are separately and linearly mapped into 256-shaded gray 
levels by which 0 represents deep black and 255 represents 
pure white. Red circles in (c) show the position of the 
isotropic points. 
 
 
For some specific values of      , its effect on the map of 
isoclinics is clearly seen. Further, the modulation intensity 
obtained from Eq. (7) is used in the isotropic point 
detection algorithm [3]. 

 
4. Results and Discussion 
Figure 1 shows the geometrical shape of the circular ring 
model used for computer generation of photoelastic fringe 
patterns. The material fringe values used in the fringe 
simulation code were obtained from the calibration of a 
bending beam made of an epoxy resin plate at three 
wavelengths; that is, λR = 612, λG = 547, and λB = 437 nm. 
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Fig. 4. Necessary binary images for the phase unwrapping 
technique proposed in reference and the first valid region 
of correct values of isoclinic angle. (a) valid region, (b) 
regions representing the positions of the isotropic points 
(complete blocks) and singular points (uncompleted 
blocks), (c) expand regions of isotropic points and singular 
points in (b), (d) result of intersection of (a) and (c), (e) 
result obtained from the application of the connected 
component labeling to (d), and (f) first valid region of 
correct values of isoclinic angle obtained by overlaying (e) 
over Fig. 3e. 
 
 
The material stress fringe values are, then,  fσ,R = 11.20, fσ,G 

= 10.01, and fσ,B = 8.000 N/(mm ⋅fringe). 

 
      4.1 Computer generated photoelastic fringe 
After obtaining N and φ from Eqs. (3) and (4) using the 
Cartesian stress components given by the analytical 
solution [2], they are, then, substituted into Eq. (1) and the 
photoelastic fringe patterns are given based on the four-
step phase shifting technique with discrete wavelengths of 
plane-polarized RGB light [5, 6].  
       Figure 2 shows the computer generated photoelastic 
fringe. Nevertheless, from these fringe patterns, it is very 
difficult to identify the position of the singular point(s) and 
isotropic point(s). 
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Fig. 5. Numerical map of unwrapped isoclinics in the 
range (−π/2, +π/2] computationally obtained from the 
phase unwrapping technique [3]. 
 
 
       4.2 Theoretical and numerical results of φ 
Figure 3a shows the map of wrapped isoclinics in the 
range (−π/4, +π/4] obtained using Eq. (4). Figure 3b 
displays the map of modulation intensity of     obtained 
using Eq. (7). This modulation intensity map is necessary 
in the isotropic point detection [3]. 
      Figure 3c shows the maps of wrapped isoclinics in the 
range         ∈ [0, +π/4] computed using Eq. (5) whereas 
Figs. 3d and e report the map of wrapped isoclinics  
           ∈ [0, +π/2] and         ∈ (−π/4, +π/4], respectively. 
They were given from Fig. 3c based on the intensity 
comparison [3]. Note that Fig. 3b can be used for 
evaluation of N because the fringe pattern is of the 
intensity data that is solely the function of N. 
      It is seen that the map of wrapped isoclinics shown in 
Figs. 3a and e are identical. This certifies that the 
numerical result agrees well with that of theory. The 
position of the isotropic points can be clearly seen in Fig. 
3c (red circles). However, one can see the isotropic points 
in all maps.  
        Due to the mechanical stability of the isotropic points, 
their positions appear in all maps of isoclinics (compare 
the positions of the isotropic points in Figs. 3c, d and e). 
Further, it is seen that the positions of the isotropic points 
are obviously observed in Fig. 3b. This is because the 
fringe order values of N are equal to zero there (zero fringe 
order). However, it is quite difficult for a non-expert or 
non-photoelastician to recognize them because the zero 
order fringe and the first order fringe gray shades resemble. 
       Figures 4a-e show all the binary images needed for the 
phase unwrapping technique proposed in reference [3] 
whereas Fig. 4f shows the first region of the correct 
isoclinic angle values. Figure 4a is the valid region 
identified by a half of        ∈ (−π/4, +π/4]; that is, the 
white pixels in the image refer to            ∈ (−π/8, +π/8]. 
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Fig. 6. Experimentally generated color photoelastic fringe 
pattern obtained using the dark-field configuration of 
plane polariscope with the tricolor light source. (a) fringe 
pattern of I1,λ (θ  = 0), (b) fringe pattern of I2,λ (θ  = π/8), 
(c) fringe pattern of I3,λ (θ  = π/4), and (d) fringe pattern of 
I4,λ (θ  = 3π/8). 
 
  
The positions of the isotropic and singular points were 
found by the detection algorithm and they are shown in 
Fig. 4b whereas Fig. 4c shows their expansion. The 
window size for detecting and expanding were of 21 × 21 
pixels. 
      Figure 4d was obtained by the intersection operation 
between Figs. 4a and c. The positions of the isotropic 
points, singular points and poles (load application points) 
were discarded from Fig. 4a. Applying the connected 
component labeling algorithm to Fig. 4d yields binary 
image shown in Fig. 4e. Then, the first region of the 
correct isoclinic-angle values is shown in Fig. 4f. This 
region was obtained by selecting the isoclinic-angle values 
from Fig. 3e using Fig. 4e as a filter. 
       Figure 5 shows the map of unwrapped isoclinics in the 
range (−π/2, +π/2] with modulo π obtained from using the 
algorithm described in Reference [3]. The brief procedures 
are as follows. All pixels at the boundary of Fig. 4f are 
detected and kept to be a starting pixel by the help of Fig. 
4e. These pixels are used as a central pixel of a 3 × 3 
unwrapping window. To-be-unwrapped pixels in this 
window are unwrapped comparing to the central pixel. 
The final value of the wrapped pixel is determined on the 
basis of the comparison of the pixel values of maps shown 
Figs. 3d and e with certain conditions [3].  
        As seen in this map (Fig. 5), the positions of all 
isotropic points and singular points can be seen. It is to be 
note that the isotropic points in this model are of positive 
type [4]. 
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Fig. 7. Maps of unwrapped isoclinics in the range (−π/2, 
+π/2]. (a) map obtained from the use of those 
experimentally photoelastic fringe patterns generated with 
the tricolor light source as shown in Fig. 6 and (b) map 
obtained from the use of those experimentally generated 
photoelastic fringe patterns generated with the white light 
source (images not shown here). 
 
 
      4.3 Experimental results of φ 
Figure 6 shows the experimentally generated fringe 
patterns captured from the dark-field configuration of 
plane polariscope with a tricolor light source [5, 6]. 
Comparing Fig. 2 to Fig. 6 reveals that photoelastic fringe 
patterns are nearly similar.  
      Figure 7a shows the map of unwrapped isoclinics in 
the range (−π/2, +π/2] with modulo π obtained using the 
fringe images shown in Fig. 6 whereas Fig. 7b was the 
map of unwrapped isoclinics given from the use of the 
photoelastic fringe images digitally recorded with the 
white light source [3]. These fringe images are, however, 
not shown here. It is easily seen in Fig. 7 that all isoclinics 

passing through the isotropic points gradually vary from 
−π/2 to +π/2 counterclockwise around such points. Hence, 
the isotropic points are of positive type [4]. 

a 

      Qualitative comparison of Fig. 7 and Fig. 5 reveals that 
they are almost alike; however, the difference can be seen 
in Fig. 7a where the end of period occurs (the locations at 
which the isoclinics rapidly change from −π/2 to +π/2). 
This difference actually was not the result of the phase 
unwrapping technique but, instead, it is the result of the 
imperfection of the photoelastic model and the experiment 
done at different time. 
       Singular points locating on the inner boundary are 
clearly observed whereas those points lying on the outer 
boundary are rather vague (Fig. 5). However, for the maps 
shown in Fig. 7, such points cannot be seen. The 
imperfection of the model might cause this. In addition, 
one can see the unsmooth area of the isoclinics near the 
lower inner boundary. This area becomes clearly seen 
because of the effect of the isochromatic parameter since 
Fig. 7b was given from images captured using white light. b 
 
5. Conclusion 
The phase unwrapping technique recently proposed by the 
present authors has been verified for its performance in the 
unwrapping of isoclinic parameter. The results of the maps 
of unwrapped isoclinics numerically and experimentally 
obtained from three different sets of the photoelastic fringe 
patterns show good agreement. 
      Generally, in photoelasticity, the circular disk under 
compressive load is used as the standard model for 
verification the performance of any developed method 
since it has theoretical formula for the reconstruction of 
the isochromatic parameter. However, this model lacks the 
important features as previously mentioned. 
      It has been shown that the results obtained from the 
phase unwrapping developed by the authors provides the 
results of both circular disk and circular ring [3] and the 
correctness of the results of the circular ring is confirmed 
here. Therefore, the circular ring can be leveled up to be 
the new standard model in photoelasticity. 
 
References 
 
 

 
[1] Ramesh, K.: Digital Photoelasticity: advanced 

techniques and applications, Springer, Berlin (2000), 
157, 231. 

[2] Chinese, R.B. and Erdlac, R.J.: Q. Jl Mech. appl. 
Math., 41 (1988), 239-247. 

[3] Pinit, P. and Umezaki, E.: Opt. Lasers Eng., 45 
(2007), 795-807. 

[4] Frocht, M.M.: Photoelasticity, Vol. 1, John Wiley & 
Sons, New York (1941), 12, 189-190, 194-195. 

[5] Pinit, P. and Umezaki, E.: Opt. Rev., 12 (2005), 228-
232. 

[6] Pinit, P. and Umezaki, E.: Key Eng. Material, 326-328 
(2006), 75-78. 

 

 - 87 -


