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Abstract 
The extraction of the singularities in the wrapped map of 
the isoclinic parameter photoelasticitally obtained is 
presented. The method involves the use of two wrapped 
maps of isoclinics and a map of modulated intensity. Two 
characteristics–the abrupt phase jumps around the 
singularities and the values of modulated intensity–are 
used to identify those positions. The technique developed 
herein is evaluated with the real phase maps of an 
eccentrically loaded split ring (C-shaped model) under 
compression and experimental results are also presented. 
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1. Introduction 
Based on phase-shifting technique (PST), two important 
problems affect the computation of isoclinic parameter, φ, 
i.e., the isochromatic-isoclinic interaction [1] and the 
wrapped phase of isoclinics. Recently, the present authors 
have proposed technique for solving the problems [2]. The 
technique does success to unwrap the wrapped phase of 
isoclinics by taking the existence of the singularities– 
isotropic and singular points–into the consideration.  

The crucial step in that work is to detect the isotropic 
and singular points and only one wrapped isoclinic map 
was used. The binary-masked image representing the 
points detected showed some erroneous positions. It has 
been shown that these erroneous positions are unaffected 
on the phase unwrapping [2] if they are well controlled. 
However, these erroneous positions may delay the whole 
unwrapping process because they are kept to be lastly 
processed. That they are to be lastly treated makes 
unwrapping routine taking more time than that of their 
detection routine. This is due to the fact that the detection 
routine works quite faster than the unwrapping.Note that, 
the phase unwrapping algorithm proposed in Ref. [2] 
composes of the detection and unwrapping routines. 
Therefore, if they are correctly detected from the start, this 
may speed up the unwrapping routine (also the whole 
process).  

Moreover, in the view of engineering (optimum) 
design, the correct positions of the isotropic and singular 
points are necessary. This is because at these points, 
stresses are equal to zero. Then, holes used for passing 
electrical wires, for example, in the structural members 
should be drilled at these points. This also reduces the 
weight of the members designed without any change of 

their external shapes [4] and, furthermore, the stress field 
remains nearly unaltered under loads. 
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their external shapes [4] and, furthermore, the stress field 
remains nearly unaltered under loads. 

For just mentioned reasons, in this paper, the detection 
of isotropic and singular points based on the combination 
of the wrapped maps of isoclinics is presented. The load 
application points or supports which behave as if they 
were singularities are taken into the consideration. Further, 
the use of the map of modulated intensity which directly 
relates to the magnitude of the principal-stress difference, 
(σ1 − σ2), for helping the detection routine is addressed. 
The detection technique is evaluated by applying to the 
eccentrically loaded split ring (C-shaped model) under 
compression. 
 
2. Numerical Computation of Isoclinic Parameter 
An intensity equation for the dark-field setup of the plane 
polariscope with a white light source for an arbitrary phase 
shifted angle position m can be expressed as [1] 
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where Δλ = λupper−λlower, λupper and λlower are the upper and 
lower limits of the spectrum of the light source, Ip,λ is the 
intensity of the polarized light coming out of the polarizer, 
Nλ is the relative or fractional fringe order for a given 
primary wavelength λ (= R, G, B) of the white light source, 
φ is the isoclinic parameter or the angle between σ1 

direction and the reference axis (horizontal axis), θ is the 
induced phase-shifted angle and Ib,λ is the total 
background intensity.  
        The relative fringe order relates to the relative 
retardation and (σ1 − σ2) in plane-stress state by 
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where δλ is the relative retardation, Cλ is the stress-optic 
coefficient, fσ,λ is the material stress fringe value for which 
its value can be obtained by calibration method and h is 
the thickness of the tested model.  

Applying the four-step phase shifting method to the 
intensity equation of the dark-field configuration of the 
plane polariscope using the white light as a light source, 
yields the equation for determining the isoclinic parameter 
as [2, 3] 
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Equation (3) gives φw ∈ [0, +π/4] due to the use of the 
ordinary arctangent function and the subscript ‘w’ denotes 
the wrapped value. Note that [0, +π/4] means 0 ≤ φw ≤ 
+π/4 whereas (−π/4, +π/4] means −π/4 < φw ≤ +π/4 and 
this identity can be applied to other ranges. 
 
3. Definition of Singularities 
Singularities are the properties of some points in the 
loaded structural member at which the state of stress 
satisfies certain specified conditions. Based on the state of 
stress in a plane problem, there are two singularities 
occurring in the map of isoclinics, i.e., an isotropic point 
and a singular point.  

Apart from these two singularities, in Ref. [2], the load 
application points or supports were also treated as if they 
were singular point (actually they are not) because the 
variation of isoclinics around them unreliable, in which 
case unreliable isoclinics can cause failure in the phase 
unwrapping. Further, it is by nature that isoclinic of some 
parameters pass through the load application points or 
supports; therefore, these points are also treated as one of 
singularities (singular point). 
 

3.1 Isotropic point 
The isotropic point is a point at which the state of stress is 
hydrostatic, i.e., σ1 = σ2 = σ ≠ 0 (or = 0) [6]. At this point, 
isoclinics of all different parameters of φ can pass through 
and intersect each other.  Since the physical range of 
isoclinics is of (−π/2, +π/2] with modulo +π operation, in 
the isoclinic maps of the ranges of [0, +π/2] and (−π/4, 
+π/4], there exist lines representing the abrupt jumps of 
isoclinics passing through the isotropic point.  
      These abrupt phase jumps have the same sign and this 
sign identifies the type of the isotropic point, i.e., positive 
or negative type. If an isotropic point is of positive type, 
the isoclinics gradually vary around such point 
counterclockwise. On the other hand, that point is of 
negative type if the isoclinics vary clockwise around it.    

Generally, an isotropic point represents itself as a point 
but in an experiment, it may present as a small region. 
Further, for some models, it may appear as a line. Recall 
the neutral axis of the beam under pure bending. 
 

3.2 Singular point 
A singular point is a special case of an isotropic point; that 
is, it is a point at which the state of stress satisfies the 
condition σ1 = σ2 = 0. At this point, isoclinics of some 

parameters of φ can pass but they do not intersect each 
other because they converge at a singular point. The 
reason is that a singular point is always on free boundaries 
at which the shear stress is equal to zero (shear-free 
boundaries). 
      The number of the lines representing the abrupt phase 
jumps converging at a singular point is difficult to predict 
because the position on the model boundaries at which the 
isoclinics converges depends on the geometrical shape of 
the model and/or load condition. This is evident that, for 
some models (e.g., circular disk under compression), the 
points along their free boundaries appear to be a series of 
singular points and in this case they form a singular line 
[5] whereas a singular point obviously appears as a point 
on the boundaries of the circular ring under compression 
[6]. 

A singular point usually represents a change in sign of 
stress, i.e., a transition from tension to compression [6]. 
Further, from the observation of the wrapped maps of 
isoclinics, it reveals that the sign of a singular point is of 
negative type [2, 7, 8]. 
 

3.3 Load application point and support (Poles) 
Load application points are points at which an action load 
exerts on the structure whereas supports are those at which 
a reaction load occurs. For simplicity, they are termed as a 
pole [4]. 

The state of stress at a pole becomes (σ1 − σ2) → ∞ 
and this is because the fringe density at and near a pole is 
very high due to the applied loads. The number of the lines 
converging at a pole is also difficult to predict as in the 
case of a singular point; however, a pole is of positive type 
[2, 7, 8]. 
 

3.4 Modulated intensity 
As seen in Eq. (1), the modulated intensity can be defined 
as the following term. 
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It is seen that Imod,λ  is a function of fringe order which 
relates to the principal-stress difference by Equation (2).        
Since at an isotropic point or singular point (σ1 − σ2) = 0, 
at that point Nλ = 0. Then, an isotropic point can be clearly 
seen in the raw fringe patterns of the model when it is 
under the field of white light in the circular polariscope.    

Since the modulated intensity is numerically obtained 
from those fringe patterns (Eq. (5)), it can help in the 
detection routine.  
 
4. Method of Detection 
The method of detection of singularities is as following. 
 

• Border isolation: this stage isolates points or 
regions around the boundaries of the model. The 
main purpose of this stage is to detain the 
unreliable isoclinics such that they are lastly 
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processed by the phase unwrapping routine. Since 
a singular point and pole are on the boundaries, 
they are also isolated. However, this stage is 
optional; that is, a user can choose to isolate only 
singular points and poles. 

 
• Detection of isotropic point: this is done by 

performing a raster scan over the isoclinic maps 
of the ranges of [0, +π/2] and (−π/4, +π/4] and 
the map of modulated intensity using technique in 
Ref. [2]. Note that at this stage all detected points 
are tentative isotropic point and they are 
separately registered into three binary arrays 
which will be described next. 

 
• Selection of singularities: since in all three arrays, 

the pixels representing the positions of 
singularities are set as 0-valued pixel. Then, any 
pixel is a isotropic point, singular point or pole if 
such pixel has 0-valued for all three arrays. 

 
5. Experimental Results and Discussion 
The system used for recording the photoelastic fringe 
images is a plane polariscope with the white light source 
(halogen lamp). A digital camera model SLR D70 of 
Nikon was used to capture the photoelastic fringe images. 
The geometrical dimension of the C-shaped model and the 
direction of the applied load and support are shown in Fig. 
1. The model was made of an epoxy resin plate.  

When performing the experiment, it was vertically 
subjected to the eccentrically compressive load P = 157 N. 
The raw color fringe images of the model digitally 
collected according to the four different orientations of the 
dark-field configuration of the plane polariscope are 
reported in Fig. 2. 
 

5.1 Maps of wrapped isoclinics 
Applying Eq. (3) to those images shown in Figs. 2(a)-(d) 
yields the map of wrapped isoclinics of the range of [0, 
+π/4] (Fig. 3(a)). The maps of wrapped isoclinics of the 
ranges of [0, +π/2] and (−π/4, +π/4] obtained from Fig. 
3(a) using the simple logic operations [2] are shown in 
Figs. 3(b) and (c), respectively, whereas Fig. 3(d) reports 
the map of modulated intensity obtained using Eq. (5). 

It is clearly seen that all isoclinics pass through the 
isotropic point (Figs. 3a-c). Nevertheless, the position of 
the isotropic point is not so clear and it appears to be a 
region and can be confirmed by comparing Fig. 3d with 
that reported in Ref. [6] (see block in Fig. 3d).  

Apart from such region, there are two more isotropic 
points (inside circle marks); however, these are not the 
isotropic point but, in fact, they are singular point and they 
should be exactly on the sharp edges. That they appeared 
as if they were an isotropic point is due to the fact that the 
residual stress or edge stress occurring when the model 
being prepared might force them to move toward inside. 
They also can be observed in all wrapped maps of 
isoclinics (Figs. 3(a)-(c)). 

6

 
 
Fig. 1 Applied load direction and dimensions of the split 
ring under eccentrically compressive load P of 157 N. The 
black and white arrows indicate the applied load direction 
and the reaction at the supports, respectively. (Geometrical 
unit: mm and image not to scale) 
 
 

   

a b 

 

   

c d 

 
Fig. 2 Raw color photoelastic fringe images of the model 
with different setup of the polariscope system: (a) θ1= 0, 
(b) θ2 = +π/8, (c) θ3 = +π/4, and (d) θ4 = +3π/8. The size 
of the images is 512 × 512 pixels. 

 
5.2 Representation of detected singularities 

Binary image shown in Fig. 4a was given by performing a 
raster scan over the map of wrapped isoclinics of the range 
of [0, +π/2] (Fig. 3b). On similar line, Figs. 4(b) and (c) 
were given from Figs. 3(c) and d. The size of window used 
for such scanning was 31 × 31 pixels and the threshold 
used for identifying abrupt jumps of isoclinics around the 
isotropic region was set to be +0.3π/2. In this case, +π/2 is  
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Fig. 3 Maps of wrapped isoclinics with different ranges 
and map of modulated intensity: (a) [0, +π/4], (b) [0, +π/2], 
(c) (−π/4, +π/4], and (d) normalized map of modulated 
intensity. Note that the actual values of modulated 
intensity are in the range [0, 1]. 
 
 
the modulo of the ranges of [0, +π/2] and (−π/4, +π/4]. It 
is worthy to note that the default value of the threshold is 
+0.8π/2 [2]. The value of +0.3π/2 was used because it was 
difficult to identify the abrupt jumps around the isotropic 
region as it is rather vague. Further, Fig. 4(c) was obtained 
from the condition that if a value of modulated intensity 
(Eq. (5)) for every point was less than or equal to 15% of 
their maximum value, such point was treated as one of 
singularities. 

Observing Figs. 4(a)-(c) reveals that the large black 
region appearing on the right side of the isotropic region in 
Fig. 4(c) is not the real one. This can be confirmed by 
closely considering Fig. 2. At that region, there is no black 
color which represents the isotropic region. However, it 
did happen because of the effect of the background 
intensity. As seen in the map of modulated intensity, such 
region appears dark (Fig. 3(d)) and this affects the 
computation of isoclinics; that is, Eq. (2) is unreliable 
when the fringe order is equal or close to zero or integer 
number. The result of this effect is clearly seen on the map 
of the range of (−π/4, +π/4] where the ragged line appears 
(see the line representing the abrupt jumps of isoclinic). In 
Figs. 4(a) and (b), there are several black regions around 
the load application point and support. These regions are 
the pole. 

By using Figs. 4(a)-(c), the binary image obtained is 
shown in Fig. 5(a) (see black line inside red circle mark). 
This was done by performing a raster scan over them and   

   

aa b b

 

   

c d c d

 
Fig. 4 Binary images representing the position of 
singularities: (a) image given from scanning over Fig. 3b, 
(b) image given from scanning over Fig. 3(c), (c) image 
given from scanning over Fig. 3(d) and (d) isolated region 
(red region). 
 
 
checking the binary triplet; that is, for the point or pixel at 
the same position in these three images (three binary 
arrays) was preserved as an isotropic point if its binary 
triplet value was (0,0,0). For other conditions, e.g., (0,0,1), 
(1,1,0), ..., that pixel was finally set as 1-valued pixel. It is 
seen that the isotropic points were found as a thin line. 
Figure 5(b) shows the expanded version of such line for 
the purpose of clarity. The circle window with radius of 15 
pixels was used to implement this. 

Since all singularities affect the performance of the 
phase unwrapping algorithm [2], they must be kept for last 
processing. Then, those regions representing the singular 
point and poles can be easily masked out by scanning 
along boundary of the binary image. With the window size 
of 13 × 13 pixels, the singular point and pole (also other 
unreliable pixels) were isolated as shown in Fig. 4(d) (red 
region). Note that, actually, in the binary array the red 
region is black (0-valued pixels); however, it is shown as 
red color for the sake of clarity. It should be noted here 
that, as the first attempt, the window size used for 
detection of singularities was of 21 × 21 pixels and the 
threshold used for identifying abrupt jumps of isoclinics 
was of +0.8π/2. This was done because of the fact that the 
smaller the size of the detecting window is, the fewer the 
scanning process takes time. The positions of singularities 
found were almost the same as those reported in Figs. 
4(a)-(c) with smaller regions. After performing a raster 
scan for the binary triplet, the obtained binary image 
contained no singularities. However, for the binary doublet 
(Figs. 4(a) and (b)), the isotropic region was detected.  
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Fig. 5 Binary images representing position of the isotropic 
region: (a) binary image obtained by checking binary 
triplet and (b) binary image obtained by expanding the 
isotropic region in (a). 
 
 

Considering Figs. 4(a) and (b) reveals that the isotropic 
region found should be larger than they were because the 
size of window used to detect them is quite large. This is 
because of the unsmooth isoclinics with small abrupt 
jumps around the isotropic region. However, the 
appearance of the unsmooth isoclinics with small abrupt 
jumps may come from the fact that the model is not 
perfectly fabricated and the directions of the applied load 
are not exactly vertical.  

Figure 6 shows the stress trajectories plotted over the 

 

a a

 

 

bb 

 
Fig. 6 Stress trajectories or isostatics of σ1 and σ2 drawn 
over the map of unwrapped isoclinics: (a) σ1 isostatics and 
(b) σ2 isostatics. 

 
 
unwrapped map of isoclinics. Since, in general, σ1 ≥ σ2, 
the major part of the outer boundary of the model between 
the applied loads is all under tension and this can be 
observed the σ1 isostatics (Fig. 6(a)). Further, it is seen 
that the trajectories are parallel to the outer boundary up to 
the points of applied loads and then they turn and become 
normal to the boundary [6].   

Similarly, the major part of the inner boundary of the 
model is all subjected to the compression (Fig. 6(b)). This 
can be verified by considering the inner boundary of the 
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model shown in Fig. 6(b). If the σ1 and σ2 stress 
trajectories are combined together, one could see that they 
form the interlocking trajectories around the isotropic 
point shown in Fig. 5. This means that the isotropic region 
is of positive type; that is, the isoclinic values gradually 
vary from −π/2 (black) to +π/2 (white) counterclockwise 
around the isotropic region. 

Although the technique works under just mentioned 
circumstances, which are the typical problem in the real 
world, the results reveal that the isotropic region is still 
found and this may be considered as the good point of the 
technique proposed herein. However, for better results, 
caution must be paid when performing the experiment. 
 
6. Conclusion 
In this paper, the technique for detection of singularities 
has been proposed. The technique is based on the use of 
the two wrapped maps of isoclinics in the ranges of [0, 
+π/2] and (−π/4, +π/4], the map of modulated intensity.  

Results of the binary images show that the isotropic 
point or region can be found using the binary triplet and 
further, singular point and poles are detected and isolated. 
This eases the phase unwrapping algorithm already 
proposed in Ref. [2] and help in the optimum design [4]. 
Further, although three binary arrays are used here 
whereas two arrays (Figs. 4(a) and (c)) were used in Ref. 
[2], the time used to perform scanning is not much 
different because the operation works on the binary image. 
For the whole process, the time taken by the phase 
unwrapping algorithm coupled with the technique 
proposed here is fewer than that reported in Ref. [2] when 
the size of the fringe image becomes large.  

As seen in Fig. 4(c) that the isotropic regions found are 
nearly close to those shown in Figs. 3(a) and (b); however, 
some points inside such regions were discarded by the 
triplet regulation. Therefore, before performing to find the 
binary triplet value, it might be better to expand such 
regions. Further, for the expanded regions, if there are 
many of them and they are close enough within a specific 
length, joining them might give better results.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The model studied here posses the isotropic region 
which presents a certain level of difficulties. However, for 
other models having the isotropic point, it is thought that 
the technique would give good results. This may improve 
the performance of the phase unwrapping algorithm and 
also help in design as previously mentioned. 
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