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Abstract 
An improvement of the already proposed phase unwrapping algorithm for directly 
processing the triangular-typed wrapped phase map of the isochromatic parameter, 
photoelastically generated by an arccosine function based on the well-known 
technique of phase-shifting, is presented. In phase unwrapping algorithm, at any 
pixel, a three-dimensional plane and its normal vector are generated using three 
fractional (relative) fringe order values. Its generated plane is then adjusted using 
the orthogonal projection associated with the reference plane. Such point is 
unwrapped on the basis of regularization. The quality guide map is used to guide 
phase unwrapping and to mask out the conflictive regions such that they are lastly 
processed. The circular disk under compression demonstrated the performance of 
the improved algorithm. Results showed the accuracy improvement in such 
conflictive regions with reasonable agreement to theory. 
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1. Introduction 

The isochromatic parameter, δ, is one of the important parameters in the field of 
photoelasticity. A number of methods based on the phase-shifting technique (PST) have 
been proposed (1)-(9) to evaluate it. Those methods used the circular (1)-(3), semi-circular (4) or 
plane (5)-(9) polariscope system. As well known, the circular polariscope and semicircular 
polariscope based methods provides the fractional fringe order in the form of a saw tooth 
type through the arctangent operator. This type of wrapped phase map is thus simple for the 
phase unwrapping (PU) algorithm to render the absolute fringe order. Good results were 
given by them based on the significant condition that the isoclinic parameter must be first 
expressed in its true phase interval, − π/2 to + π/2. If this is not fulfilled, unwrapping the 
isochromatic parameter is impossible except for the work done by Sai Prasad et al. (10) in 
which the ambiguous zones in the wrapped phase map of δ were manually corrected before 
unwrapping. Manual correction is, however, very tedious task. Apart from such condition, 
the results obtained might be affected by the mismatch error of the quarter-wave plate used. 

For those methods based on the use of the plane polariscope (5)-(9), the wrapped phase 
map obtained is of a triangular type due to the use of arccosine operator. In this case, the 
unwrapping process is difficult because the wrapped phase map possesses the sign 
ambiguity due to the nature of the cosine function (even function). Chen (2), Sarma et al. (5) 
and Plouzennec et al. (8)-(9) had attempted to directly unwrap this type of wrapped phase 
map. Chen’s and Sarma et al’s methods used the unload fringe pattern which limited the 
methods to the frozen slices. The Plouzennec et al’s methods provide good results if there is 
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zero-order fringe in the fringe field. 
The present authors have been recently presented the new phase unwrapping working 

directly with the triangular type wrapped phase map with the concept of the 
three-dimensional (3D) plane generated from the fractional fringe order (11). The 
performance of such proposed method was theoretically examined with the limitation at and 
near the conflictive regions, the load application and reaction points. This work is then to 
improve the performance of the proposed PU algorithm at such zones. The performance of 
the proposed method is theoretically examined with the problem of the circular disk under 
compressive load.  

 

2. Determination of Fringe Order 

2.1 Equation of fractional fringe order 
The equations of fractional retardation, f

λδ , and fringe order, f
λN , can be written, 

respectively, as (11)  
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where λ is wavelength of the light source, Imod,λ and Ip,λ are the modulated intensity and the 
intensity coming out of the polariscope at the given wavelength λ. The superscript ‘f’ only 
denotes that these parameters are of fractional or relative value. Equations (1) and (2) are 
mathematically limited in the range 0 to π, and 0 to 0.5, respectively, due to the range of the 
arccosine function. 

The relation between f
λδ  and f

λN  is given by (11) 
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where Cλ is the stress-optic coefficient, fσ,λ (= λ / Cλ) is the material stress fringe value 
obtained by calibration and h is the thickness of the model studied.  

 
2.2 Equation of absolute fringe order 

Due to the multiple-valued function of the trigonometric function, the absolute fringe 
order u

λN  can be written as (11) 
 

f
int

u
λλ NNN ±=   for 0u ≥λN  and 0int ≥N                               (4) 

 
The superscript ‘u’ denotes the absolute fringe value or unwrapped value and Nint is an 
integral fringe value. The upper and lower signs are used when Nint = 0, 1, 2, … and Nint = 1, 
2, 3, …, respectively. 

Since the state of stress at the same point on the model is the same for different 
wavelengths (2); hence, from Eq. (3), the following relation is valid. 

KhfN =−= )( 21,
u σσλσλ                                              (5) 

where K is a constant. Then, for three RGB wavelengths used here, Eq. (5) can be rewritten 
as  
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Fig. 1 Three-dimensional (3D) plane and vector ⊥P  normal to the plane generated in the 
fringe order space that is analogous to the Cartesian coordinates as shown. 

 
 

KhfNfNfN =−=== )( 21B,
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GR,

u
R σσσσσ                             (6) 

 
Equation (6) is used later for the generation of the 3D reference plane which acts as a plane 
calibrator for the detection of the seed point. 
 

3. Phase Unwrapping (PU) 

3.1 Three-dimensional plane 
Consider the fringe order space as shown in Fig. 1. Note the way that this fringe order 

space is analogous to the Cartesian coordinates. The coordinates of the points at the 
intersection between the plane and the axes are, respectively, (NR, 0, 0), (0, NG, 0) and (0, 0, 
NB). Then, by these three points, the vector normal to the plane is given as (11) 

 
kjiP GRBRBG NNNNNN ++=⊥                                        (7) 

 
and its unit vector 
 

⊥

⊥
⊥ =

P
Pn                                                           (8) 

 
 

The unit vector is used for detection of the seed point. It should be noted that, by the nature 
of the fringe order (Nλ > 0) and Eq. (6), the generated 3D plane is only in the first octant and 

⊥P or ⊥n always points outwards from the origin O and their direction is totally constant. 
When all absolute fringe order becomes zero, there is no such plane (the plane turns to be a 
point) and ⊥P is a null vector.  
 
3.2 Quality map 

As shown in the work proposed in Ref. (11), the simulated unwrapped phase map of Nλ 
obtained from the wrapped phase map (Fig. 2a) was greatly comparable to that of theory 
except for the region at and near the load application point (see Figs. 2b and its 
magnification in Figs. 2c and 2d).  

The quantity used to guide the PU algorithm was the values of Imod,avg = 3
1 (Imod,R + 

Imod,G + Imod,B). Imod,avg values can be thought as a quality indicator for the pixel of interest.  
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Fig. 2 Wrapped (fractional) and unwrapped (absolute) fringe order maps: (a) wrapped map 
(superposition of f

RN , f
GN , and f

BN ), (b) unwrapped map of u
GN  (shown in this color 

scale for the sake of clarity), (c) close-up view of upper portion around the load application 
point in (b), and (d) close-up view of lower portion around the reaction point in (b). The 
unwrapped map in (b) was obtained from the PU algorithm proposed in Ref. (11). The size 
of (a) and (b) is of 512 × 480 pixels. 
 
The quality maps are the arrays of the values of quality indicator indicating the goodness (or 
badness) of the phase data of all points in the fringe field. For simplicity, the values 
generally are normalized into the range from 0 to 1 by which one represents the best quality 
and zero shows the lowest quality.  

The reason why the errors occurred at and near the load application has been explained 
in Ref. (11); however, for clarity, it should be mentioned here. That is, at and near the load 
application point, the fringe undulation changes rapidly; hence, the use of any pixel in such 
region to be the seed point for unwrapping causes the error propagation to neighboring 
pixels. Figure 2c shows this error propagation. It is evident that only the use of Imod,avg to 
guide the PU algorithm leads to wrong unwrapped values. Then, to solve this problem, such 
regions (both upper and lower parts) have to be masked out and to be lastly processed by 
the PU algorithm. Other quality maps used to fulfill such need are the pseudo-correlation 
and phase derivative variance (12). 

 
3.2.1 Pseudo-correlation map (PCM) 

The quality of any pixel by the pseudo-correlation map is given by 
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kernel where k is the number of pixel. The summation in Eq. (9) is performed over all pixel 
inside the kernel. δi,j is the fractional retardation at location i and j inside such kernel and 
can be obtained from Eq. (1). 
 
3.2.2 Phase derivative variance map (PDVM) 

The quality of any pixel by the phase derivative variance map is given by 
 
 2 2
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where Qm,n denotes the quality of the central pixel at location m and n of the same k × k 
kernel as described for Eq. (9). The terms ,∆ x

i j and ,∆ y
i j  are the partial derivatives of the 

wrapped retardation δi,j at location i and j determined by the two-point forward finite 
difference. The terms ,∆x

m n and ,∆ y
m n  are the average of these partial derivatives in such 

kernel. 
 
3.3 Procedure of PU 

The improved PU algorithm involves the following steps: 
Step 1: Compute the fractional fringe values for each wavelength using Eq. (2). 
Step 2: Generate a reference plane by means of the vector normal to the plane using 

Eq. (7). That is, let NR = u
RN by which the values of u

RN  (or u
GN , u

BN ) is assumed to be 
known and of fσ,λ are obtained from the calibration, yields (11) 

 
ref u u u u u u

G B R B R GN N N N N N⊥ = + +P i j k                                      (11) 
 
Due to the validity of Eq. (6), all vectors for all pixels in the domain are collinear after 
unwrapping. 

Step 3: Detect points or pixels whose fractional fringe order values satisfying the 
following conditions: (11) 
 • f f f

R G BN N N< <  and 
 • f

R 0.1N ≥  and f
B 0.4N ≤  

The first condition comes from the implication of Eq. (6) for which the zero-fringe order is 
discarded. The second condition is to prevent the use of unreliable fractional fringe values 
because, generally, the fractional fringe values does neither start from 0 nor end with 0.5 
(this range is dependent of the user but f

RN > 0). 
Step 4: Detect the seed point using the vectorial matching. For all pixels detected 

from step 3, use each set of those three fringe order values to generate the vector normal to 
the plane and then its unit vector ( ⊥P and ⊥n ). Then, the pixel in a largest region (group of 
pixels) which possesses a maximum of ref

⊥ ⊥⋅n n (vector dot product) is chosen to be the seed 
point for unwrapping. Note that the pixel possessing ref

⊥ ⊥⋅n n ≥ 0.8 is considered in order to 
speed up the process. Generally, the generated plane at this seed point is not parallel to the 
reference plane ref

⊥P obtained from step 2; hence, in order to make them parallel, the 
orthogonal projection can be applied. By doing this, the very accurate values of the absolute 
fringe orders at the seed pixel can be obtained. 

Step 5: Compute the pseudo-correlation or the phase derivative variance map using 
Eq. (9) or (11). Let Tcut be a predefined threshold determined by a user. For any pixel in the 
fringe field, if Q ≤ Tcut, it is considered to be a bad pixel and, then, it is masked out in order 
that it is lastly unwrapped. However, since at such conflictive regions, the fringe density is 
problematically very high, the value of Q may be not uniform for the neighboring pixels; 
therefore, it is better to expand such cut pixel to be a region. Then, let Γw×h be a kernel for 
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this expansion where w and h are the width and height, respectively. Therefore, by properly 
selecting values of w and h, the unreliable regions at and near the load application and 
reaction points are marked or cut out. 

Step 6: Perform unwrapping starting from the seed pixel (also seed plane) obtained 
from step 4 with the regularization (13). The seed pixel is used as the central pixel of the 
8-neighbors mask window. Then, for the wrapped pixels locating inside the mask window, 
minimize (11) 
 

      
 
 
where d (≥ 0) is the shortest distance from the generated plane to the origin of the 
coordinates of the pixel being considered and dc is also the shortest distance but of the 
central pixel. Iλ (= cos f

λδ ) can be obtained from Eq. (1). It should be noted that, in term of d, 
the generated plane of the considered pixel is automatically parallel to the reference plane 
and also ref

⊥⊥ = nn . Then, the absolute fringe order in term of d can be written as 
 

                                                    
 
 
Note that, ref

,λ⊥n  (or λ,⊥n ) is the directional cosine of the unit vector with respect to the 
Cartesian coordinates or fringe order space (Fig. 1). Therefore, the merit functional to be 
minimized can be rewritten as 
 

      
 
 
For the pixel being considered, define (dc + 1) ≤d ≤ (dc − 1) where (dc + 1) and (dc − 1) are 
the upper and lower bounds of the shortest distance set, respectively. Then, by reducing d 
value with the known step s = 1/10k, where k (= 0, 1, 2, . . . ) is the iteration number, from 
the upper bound to the lower one and computing E at each step, yield the minimum E and 
the associated d. E value and its associated d value are registered into an array.  

For the next (k + 1)th round iteration, d values at the array indexes former and later the 
index pointing to the minimum E at the kth round iteration are reassigned to be the upper 
and lower bounds of the (k + 1)th iteration. The process is repeated until the difference 
between these bounds satisfies a predefined stopping criterion. After stopping, the absolute 
fringe orders for each wavelength are obtained from Eq. (14). It should be noted that the 
unwrapping order for the wrapped pixels in the 8-neighbors mask window is controlled by 
the value of Imod,avg, i.e., pixel having the maximum Imod,avg is unwrapped first and the pixel 
with the minimum Imod,avg is lastly unwrapped. As clearly seen in Fig. 2 that only the use of 
Imod,avg to guide the PU algorithm leads to wrong unwrapped values. Then, in stead of using 
Imod,avg, the pseudo-correlation or the phase derivative variance quality maps can also be 
employed. This process is repeated until all pixels in the domain are unwrapped.  

For clarity, the whole process of the PU algorithm is divided into two stages: an 
expansion stage and a shrinkage stage. The expansion stage handles all points that are not 
masked out in step 5. That is, the PU algorithm starting from the seed point and the 
unwrapped region continuously grows from its outer most boundaries. For the shrinkage 
stage, the pixels in the masked region are unwrapped and such region gradually become 
smaller from the outer most boundaries. Both stages are guided by the quality map. It is to 
be noted again that before the expansion stage taking place, the quality map masks out the 
conflictive regions. 
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Fig. 3 Quality guide maps and their mask images: (a) pseudo-correlation quality map, (b) 
phase derivative variance quality map, (c) mask image of (a), (d) mask image of (b), (e) 
expanded masked region of (c), and (f) expanded masked regions of (d). These images were 
obtained from step 5 in section 3.3. 
 

4. Numerical Simulation 

4.1 Conditions for simulation 
The circular disk subjected to diametral compressive load was also used as in Ref. (11) in 
order of comparison. The diameter and thickness of circular disk model were of 30 mm and 
6 mm, respectively. The material stress fringe values used to simulate the fringe patterns 
were fσ,R = 11.20, fσ,G = 10.01 and fσ,B = 7.997 N/(mm·fringe). They were of epoxy resin 
plate and calibrated at wavelengths R = 612 nm, G = 547 nm and B = 437 nm. When 
simulating, the disk was virtually loaded by a force P of 274 N. The photoelastic fringe 
patterns were generated based upon the equation in Ref. (14). The stopping criterion (the 
difference between the upper and lower bounds), which is the user dependent parameter, 
was set to be 1 × 10−5. With those material fringe values, the reference vector ref

⊥P normal 
to the reference plane can be determined. That is, by assuming u

GN = 1.000, with Eqs. (6) 
and (12), yields u

RN = 0.8940 and u
BN = 1.252 and, then, using Eqs. (7) and (8), also yields 

ref 1.252 1.119 0.8940⊥ = + +P i j k and ref 0.6581 0.5882 0.4670⊥ = + +n i j k . Note that ref
⊥P is 

obtained from Eq. (6); therefore, other planes that are parallelly derived from this reference 
plane do perfectly satisfy Eq. (6). This is also true for u

RN , u
GN , and u

BN for the point being 
considered. Further, after completing unwrapping process, all vectors in the fringe field are 
collinear.  
    It is instructive to note that whatever the value of u

GN is, ref
⊥n is still the same, even 

though ref
⊥P has different values. This means that there are infinite 3D planes associated 

with ref
⊥P in the fringe order space (Fig. 1) and this implies the name ‘hyperplane’ phase 

unwrapping. One of these reference planes can be used as the plane calibrator. 
 
4.2 Results of simulation 

Figure 2a shows the wrapped fractional fringe map which was computationally 
obtained using Eq. (2) with the simulated images. The continuous unwrapped phase map of 

u
GN as shown in Fig. 2b was rendered from the original PU algorithm (11). Note that for the 

map of the wrapped retardation f
Gδ , it is identical to Fig. 2a but the values are different (see 

Eq. (3)).  
Figure 3 displays the quality guide maps and their mask images of the conflictive 

regions at and near the load application and the reaction points. Figures 3a and 3b were  

a b c d 

e f 
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Fig. 4 Unwrapped absolute fringe order map of u

GN obtained from the expansion and 
shrinkage stages: (a) unwrapped absolute fringe order map obtained using the 
pseudo-correlation quality map in Fig. 3a and the mask image in Fig. 3e (expansion stage), 
(b) unwrapped absolute fringe order map obtained using the phase derivative variance 
quality map in Fig. 3b and the mask image in Fig. 3f (expansion stage), (c) complete 
unwrapped absolute fringe order map after performing shrinkage stage of (a), and (d) 
complete unwrapped absolute fringe order map after performing shrinkage stage of (b). 
 
obtained using f

Gδ with a 3 × 3 kernel (k = 3). The quality values were normalized into the 
range 0 to 1 by which 0 represents deep black and 1 represents pure white. With Tcut = 0.7, 
Figs. 3c and d were given and Figs. 3e and 3f were, respectively, provided from Figs. 3c 
and 3d with Γ9×9 and Γ17×17. Note that the two parameters, Tcut and Γw×h, are user-dependent. 
The reason why those quality maps were determined for only f

Gδ is that the proposed 
algorithm used the material fringe value fσ,λ to help the 3D plane generation and fσ,λ can be 
obtained from the calibration according to the wavelengths used. It is evident that only fσ,G 
which is experimentally obtained is very close to the theoretical value (15). Therefore, the 
green channel of the fringe image can be considered to be equivalent to the image recorded 
by a green filter. Then, the determination of quality maps could gain a benefit from f

Gδ . This 
also discloses the derivation method for finding ref

⊥P .  
Figure 4 shows the continuous unwrapped absolute fringe order map. The unwrapped 

maps provided from the expansion stage are shown in Figs. 4a and 4b for the 
pseudo-correlation and the phase derivative variance, respectively. Note that, at this 
expansion stage, Imod,avg can be used to guide the PU algorithm and the unwrapped map 
obtained was identical to Fig. 4a or 4b (see Fig. 2b and note that their actual unwrapped 
fringe order values were similar). After executing the shrinkage stage, the unwrapped maps 
obtained are depicted in Figs. 4c and 4d corresponding to Figs. 4a and 4b. Topographical 
maps of the unwrapped maps as shown in Figs. 2b and 4c are respectively depicted in Figs. 
5a and 5b and they are displayed only in the y-z view. 
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Fig. 5 Topographical maps of the unwrapped absolute fringe order map of u
GN  shown only 

the y-z view in the image coordinates: (a) map of Fig. 2b obtained from the method 
proposed in Ref. (11) and (b) map of Fig. 3c obtained from expansion and shrinkage stages 
of the proposed method. The step used to plot these topographical maps was 4 pixels for 
both x and y directions. The z-axis is coincident to the axis of the absolute fringe order. 

 

5. Discussion 

As obviously seen in Fig. 2c that the unwrapped absolute fringe order values obtained at 
and near the load application and reaction points contain errors. Imod,avg itself is the good 
quality indicator for guiding the PU algorithm to unwrap all points in the field of view but 
its rapid undulation at the conflictive regions degraded its guidance performance. To handle 
this problem, then, such regions have to be excluded or masked out.  
    Since, Imod,avg is derived directly from the intensity, it, then, cannot be used to be as a 
conflictive-point masker because, if it is used, other pixels locating further away from such 
erroneous regions may also be masked out. For the masker, other quality maps can be 
employed. The widely used quality map is the pseudo-correlation map and the phase 
derivative variance map (12). Note that the required quality map must have ability for 
identifying the conflictive points or regions. Comparing Fig. 3c to Fig. 3d, reveals that the 
ability for conflictive-point detection of the pseudo-correlation is better than that of the 
phase derivative variance. It is seen that the unwrapped maps rendered from the PU 
algorithm with different quality maps are almost identical (Figs. 4c and 4d). The errors that 
might happen and propagate to the neighboring pixels were confined within the conflictive 
regions. This shows the improvement of the proposed PU algorithm (compare with Fig. 2b). 

It is seen that the fringe order value at the right lobe of Fig. 5a is higher than that of Fig. 
5b; however, at the left lobe of Fig. 5a, the errors (see Fig. 2c) expressed themselves 
considerably whereas Fig. 5b contains no such errors and reflects accurately the physical 
situation of the problem; that is, the left and right lobes should have similar fringe order 
values. It should be noted that the maximum scales used in Fig. 5 are different from those 
used in Figs. 4c and 4d. In Figs. 4c and 4d, the maximum fringe order values expressed 
themselves as outlier data; hence, they were discarded but in Fig. 5, actual data were used to 
plot the maps. 

The difference in the ability of the two quality guide maps used should be addressed 
here. Generally the phase derivative variance map is the most reliable measure of phase 
quality (12). Nevertheless, by its nature, it cannot be responsive to the regions of high-phase 
variation. Since, for the problems in the photoelasticity, there always exist the high-phase 
variation regions (region at and near the load application and reaction points) due to the 
applied load; hence, the phase derivative variance failed to identify them. In case of the 
pseudo-correlation, it can greatly recognize the regions of high-phase variation; however, it 
may have error coming up with the use of it.  
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Close inspection of Figs. 3a and 3b for those regions corresponding to the white regions 
in the mask images shown in Figs. 3e and 3f, reveals that the quality values are different. 
The pseudo-correlation provided almost equal quality values for such region, i.e., assigning 
the high quality value for the most pixels, while the phase derivative variance graded 
considerably different qualities. This is important because when unwrapping with the 
pseudo-correlation quality map, this difference is over looked and the low-quality pixel (but 
higher quality than the pixels in the conflictive regions) may be chosen to be the seed point. 
As a result, the error may happen and propagate to the neighboring pixels. 

The obtained absolute fringe order values at the disk center from the PU algorithm were 
of 2.076, 2.323 and 2.908 for u

RN , u
GN , and u

BN , respectively. For u
GN , it can also be 

estimated from Fig. 5 (see at 240th pixel). The theoretical values of these absolute fringe 
order values can be calculated using the well-known equation (14) 

 
                                     

 
 
where P is the applied load, r is the radius of the disk, x and y are the typical axes in the 
Cartesian coordinates with the origin at the disk center. Then, by Eq. (15), at the central 
point (x = y = 0), u

RN = 2.0787, u
GN = 2.3260 and u

BN = 2.9112. It is seen that the absolute 
fringe orders rendered from the PU algorithm are very close to these values, accordingly. 
  

6. Conclusion 

An improvement of the already proposed PU algorithm for an automatic determination 
of the absolute fringe order is presented. The method is theoretically examined by applying 
to the simulated photoelastic fringe images of the circular disk subjected to diametrically 
compressive load generated based on the four-step phase shifting technique.  

With the cross-relation between the theoretical space (reference plane) and the 
experimental space (first seed plane), reliable unwrapped phase data is given. The obtained 
results show the significant improvement in the accuracy of the phase data in the conflictive 
region with the use of the quality map.  

The use of the modulated intensity Imod,avg to be the guidance provides the good profit of 
the highest absolute fringe order (Fig. 2b) but fails in the conflictive regions. Thus, the 
combination between these quality guide maps (Imod,avg, the pseudo-correlation quality map 
and the phase derivative variance map) may give another look of the quality guide map that 
is more suitable for solving the problems. 
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