

การประชุมวิชาการเครือข่ายวิศวกรรมเครื่องกลแห่งประเทศไทย ครั้งที่ 23 4 – 7 พฤศจิกายน 2552 จังหวัดเชียงใหม่

การจำลองสนามความเค้นของคานสี่เหลี่ยมอย่างง่ายรับแรงกระจายเอกรูปและ แผ่นเรียบบางมีรูกลมตรงกลางรับความเค้นเฉือนล้วนด้วยโฟโตอีลาสติกซิตีเชิงเลข A Digital Simulation of Stress Field of a Simply Supported Rectangular Beam under a Uniformly Distributed Load and a Plate with a Circular Hole at its Center under a Uniformly Shearing Stress using Digital Photoelasticity

<u>ศรัณยู มั่นพิศุทธิ์</u> และ พิเชษฐ์ พินิจ*

ภาควิชาครุศาสตร์เครื่องกล คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี บางมด ทุ่งครุ กรุงเทพฯ 10140 *ผู้ติดต่อ: pichet.pin@kmutt.ac.th, โทรศัพท์ (662) 4708522, โทรสาร (662) 4708527

บทคัดย่อ

สนามความเค้นมีความสำคัญต่อการออกแบบชิ้นส่วนทางกล ลักษณะของสนามความเค้นเป็นตัวกำหนด รูปร่างของชิ้นส่วน เพื่อให้สามารถรับภาระภายนอกได้ตามความต้องการ สิ่งซึ่งแฝงอยู่ในสนามความเค้น เช่น บริเวณที่ความเค้นมีค่าสูงสุด บริเวณที่ความเค้นมีค่าเท่ากับศูนย์ ลักษณะการไหลของความเค้น สามารถมองเห็น ได้โดยอาศัยวิธีการวิเคราะห์ความเค้นเชิงทดลอง ที่เรียกว่า โฟโตอีลาสติกซิตีเชิงเลข บทความนี้นำเสนอการ จำลองสนามความเค้นของคานอย่างง่ายอยู่ภายใต้แรงกระจายแบบเอกรูป และแผ่นเรียบบางขนาดใหญ่ที่มีรูกลม ตรงกลางอยู่ภายใต้ความเค้นเฉือนล้วน โดยอาศัยวิธีโฟโตอีลาสติกซิตีเชิงเลขร่วมกับผลเฉลยแม่นตรงจากทฤษฎี สภาพยืดหยุ่น การจำลองตั้งอยู่บนพื้นฐานการใช้สมการความเข้มแสงควบคุม ผลจากการจำลองซึ่งอาศัยหลักการ เลื่อนเฟสทำให้ได้ริ้วโฟโตอีลาสติก และริ้วไอโซคลินิก, ริ้วไอโซโครมาติก, ริ้วไอโซพาชิก

Abstract

Stress field is of paramount importance in design of mechanical members. It defines a shape of members being designed to withstand external loads. What are in a stress field, such as areas of high stresses, areas of zero stresses, and flow of stresses, can be seen by digital photoelasticity. This paper presents a digital simulation of stress fields of a simply supported rectangular beam under a uniformly distributed load and a plate with a circular hole at its center under a uniformly shearing stress by means of digital photoelasticity coupled with the exact solutions given from the Theory of Elasticity. The simulation is based on a use of governing intensity equation. Results from a simulation using the phase shifting method provide photoelastic fringe and isopachic fringe with reasonable accuracy.

Keywords: Digital photoelasticity, Isoclinic fringe, Isochromatic fringe, Isopachic fringe

วิธีการหนึ่ง ๆ ที่ถูกสร้างขึ้นจะต้องได้รับการ ทดสอบกับหลาย ๆ ปัญหาที่ทำไว้เป็นมาตรฐาน เพื่อที่ผู้สร้างจะได้เห็นพฤติกรรมการแก้ปัญหาของ วิธีการนั้นได้อย่างชัดเจนเมื่อค่าตัวแปรเปลี่ยนไป ใน การศึกษาทางด้านโฟโตอีลาสติกซิตีเชิงเลขนั้น การ ทดสอบวิธีการดังกล่าวกับภาพริ้วความเค้นจึงเป็นสิ่งที่ ไม่สามารถหลีกเลี่ยงได้

เพื่อตอบสนองความจำเป็นดังกล่าว ผู้วิจัยเองได้ จำลองภาพริ้วสนามความเค้นของปัญหาหลาย ๆ แบบ [1, 2] (รูปที่ 1) และในครั้งนี้ ผู้วิจัยจะนำเสนอ การจำลองริ้วสนามความเค้นของคานสี่เหลี่ยมอย่าง ง่ายรับแรงกระจายเอกรูป และแผ่นเรียบบางมีรูกลม ตรงกลางรับความเค้นเฉือนล้วน ซึ่งจะเป็นการเพิ่ม จำนวนริ้วสนามความเค้นมาตรฐานอันเป็นประโยชน์ ต่อการทดสอบวิธีการแก้ปัญหาทั้งที่ได้มีการนำเสนอ ไปแล้วและที่กำลังจะนำเสนอ เพื่อเป็นการพัฒนาขีด ความสามารถของวิธีการข้างตันต่อไปในอนาคต

2. ตัวแปรทางโฟโตอีลาสติกซิตี

ในการศึกษาทางด้านโฟโตอีลาสติกซิตี มีตัวแปร ที่สำคัญสองตัวแปร คือ ตัวแปรไอโซคลินิก φ และ ตัว แปรไอโซโครมาติก N_c โดยที่ตัวแปรไอโซคลินิกจะมี ความสัมพันธ์กับทิศทางของความเค้นหลัก ขณะที่ตัว แปรไอโซโครมาติกจะแสดงถึงขนาดของผลต่างของ ความเค้นหลัก อย่างไรก็ตามยังมีตัวแปรอีกหนึ่งตัวที่มี ความสำคัญต่อการแยกความเค้น กล่าวคือ ตัวแปรไอ-โซพาชิก N_p หัวข้อนี้จะกล่าวเกี่ยวกับตัวแปรเหล่านี้

2.1 ตัวแปรไอโซคลินิก

เป็นที่ทราบกันดีว่า ทิศทางของความเค้นหลัก สามารถคำนวณหาได้ โดยอาศัยความสัมพันธ์ระหว่าง องค์ประกอบความเค้น ซึ่งเขียนเป็นสมการได้ดังนี้ [3]

$$\tan 2\phi = \frac{2\tau_{xy}}{\sigma_{xx} - \sigma_{yy}} \tag{1}$$

สำหรับระบบพิกัดคาร์ทีเซียนและ

$$\tan 2(\phi - \theta) = \frac{2\tau_{r\theta}}{\sigma_{rr} - \sigma_{\theta\theta}}$$
(2)

1. บทนำ

โฟโตอีลาสติกซิตีเซิงเลขเป็นวิธีการวิเคราะห์ ความเค้นเชิงทดลอง (experimental stress analysis) ที่สามารถแสดงสนามความเค้นในแบบเชิงทัศน์ การ วิเคราะห์ความเค้นด้วยวิธีนี้มีตัวแปรที่สำคัญอยู่สอง ตัวแปร ซึ่งจะใช้อธิบายลักษณะของสนามความเค้น ดังกล่าว ตัวแปรเหล่านี้ คือ ตัวแปรไอโซคลินิก และ ตัวแปรไอโซโครมาติก ตัวแปรไอโซคลินิกจะสัมพันธ์ กับทิศทางของความเค้น ขณะที่ตัวแปรไอโซโครมาติก จะแสดงค่าผลต่างของความเค้นหลัก (σ₁ – σ₂) ซึ่ง สัมพันธ์กับค่าความเค้นเฉือนสูงสุด σ_{max} อีกทอดหนึ่ง

ในการศึกษาทางด้านโฟโตอีลาสติกซิตีเชิงเลข นั้นยังมีตัวแปรอีกหลายตัวแปรที่มีความสำคัญต่อการ วิเคราะห์ความเค้น และหนึ่งในนั้นก็คือ ตัวแปรไอโซ-พาชิก (isopachic parameter) ตัวแปรนี้แสดงถึงค่า ผลรวมของความเค้นหลัก ($\sigma_1 + \sigma_2$) ซึ่งหากนำค่า ($\sigma_1 - \sigma_2$) รวมกับ ($\sigma_1 + \sigma_2$) ด้วยเงื่อนไขที่เหมาะสม ก็จะได้ค่าความเค้นหลัก σ_1 และ σ_2 ที่แยกออกจากกัน ซึ่งสามารถนำไปใช้ออกแบบชิ้นส่วนทางกลในทฤษฏี ความเสียหาย (failure theories) เช่น ทฤษฏีความ เค้นเฉือนสูงสุด หรือ ทฤษฏีพลังงานแปรรูป เป็นต้น

นักวิจัยหลาย ๆ ท่าน ได้ทำการศึกษาปัญหา เกี่ยวกับตัวแปรต่าง ๆ ข้างต้นเพื่อนำไปประยุกต์ใช้ ในทางปฏิบัติ วิธีการต่าง ๆ ที่ถูกนำเสนอขึ้นมานั้นจะ มีระดับความถูกต้องเชิงตัวเลขที่ขึ้นอยู่กับแบบจำลอง ทางคณิตศาสตร์ของสมการความเข้มแสงควบคุมที่ เกี่ยวเนื่องกับชนิดหรือประเภทของโพลาริสโคป ที่ใช้ ในการศึกษา

มีหลายป[ั]จจัยที่มีอิทธิพลต่อประสิทธิภาพของ วิธีการที่กล่าวถึงข้างต้น กล่าวคือ

- ความสามารถในการแก้ปัญหาหลาย ๆ รูปแบบ
- ความถูกต้องของผลลัพธ์
- ความรวดเร็วในการคำนวณ

จากการพิจารณาของผู้วิจัยเอง เห็นว่า ป[ั]จจัยแรกเป็น เรื่องที่มีความท้ายทายมากที่สุด ทั้งนี้เพราะว่า หากมี วิธีการแก้ป[ั]ญหาหนึ่ง ๆ ที่สามารถใช้ได้กับหลาย ๆ สถานการณ์ก็จะเป็นประโยชน์อย่างมาก

รูปที่ 1 ภาพสี (RGB) 24 บิต ริ้วไอโซโครมาติก โดยที่ (ก) และ (ข) เป็นภาพของแผ่นวงแหวนรับแรงเข้มกด ตรงกันข้ามในแนวเส้นผ่านศูนย์กลางที่ได้จากการ จำลอง และการทดลอง ตามลำดับ [1] ส่วน (ค) และ (ง) เป็นภาพแผ่นเรียบบางขนาดใหญ่ที่มีรูกลมตรง กลางรับความเค้นดึงล้วนที่ได้จากการจำลอง และการ ทดลอง ตามลำดับ [2]

สำหรับระบบพิกัดเชิงขั้ว โดยที่ θ คือ มุมระหว่าง ระบบพิกัดทั้งสอง

พิจารณาสมการ (1) หรือ (2) พบว่า ตัวแปรไอโซ-คลินิกจะมีค่าอยู่ในย่าน 0° ถึง +90° หรือ ย่าน -45° ถึง +45° ทั้งนี้ขึ้นอยู่กับการแสดงผลลัพธ์ แต่ค่ามอ-ดูโล (modulo) ของย่านทั้งสองจะมีค่าเท่ากัน คือ +90° ปัญหานี้เป็นปัญหาที่มีสำคัญในการวิเคราะห์หา ค่า φ ทั้งนี้เนื่องจากว่า ในทางปฏิบัตินั้น φ จะมีค่าอยู่ ในย่าน -90° ถึง +90°

ป ัญหานี้ทำให้ผู้วิเคราะห์ไม่สามารถแยกได้ว่า ทิศทางค่าใดจะสอดคล้องกับ σ₁ หรือ σ₂ ซึ่งในทาง ทฤษฏีเราสามารถแก้ป ัญหาที่ว่านี้โดยอาศัยวงกลม โมร์หรือวิธีเวกเตอร์เจาะจง [4] อย่างไรก็ตาม การ แก้ป ัญหาด้วยวิธีดังกล่าวเป็นกระบวนการที่ยุ่งยาก ซับซ้อนมาก หากจะวิเคราะห์ทั่วทั้งสนามความเค้น ด้วยเหตุนี้การวิเคราะห์ตัวแปรไอโซคลินิกเชิงสนามจึง เป็นเรื่องที่มีความจำเป็นอย่างยิ่ง

2.2 ตัวแปรไอโซโครมาติก

ความสัมพันธ์ระหว่างตัวแปรไอโซโครติกหรือ อันดับริ้วไอโซโครติก N_c กับ (σ₁ – σ₂) สามารถเขียน เป็นสมการ โดยอาศัยกฎแห่งแสงและความเค้น (stress-optic law) ได้ดังนี้ [1]

$$N_{\rm c} = \frac{t}{f_{\sigma}} (\sigma_1 - \sigma_2) \tag{3}$$

โดยที่ f_σ คือ ค่าสัมประสิทธิ์สัมพัทธ์ทางแสงและความ เค้น และ t คือ ความหนาของตัวแบบ

สมการ (3) สามารถเขียนได้ใหม่ในพจน์ของ องค์ประกอบความเค้นระนาบ [3] กล่าวคือ

$$N_{\rm c} = \frac{t}{f_{\sigma}} \left\{ (\sigma_{xx} - \sigma_{yy})^2 + 4\tau_{xy}^2 \right\}^{1/2}$$
(4)

สำหรับระบบพิกัดคาร์ทีเซียน และ

$$N_{\rm c} = \frac{t}{f_{\sigma}} \left\{ (\sigma_{rr} - \sigma_{\theta\theta})^2 + 4\tau_{r\theta}^2 \right\}^{1/2}$$
(5)

สำหรับระบบพิกัดเชิงขั้ว

พิจารณาสมการ (4) และ (5) จะพบว่า *N*c จะมี ค่าเท่ากันและไม่ขึ้นอยู่กับมุมระหว่างระบบพิกัดทั้ง สอง ซึ่งต่างจากตัวแปรไอโซคลินิก (เปรียบเทียบกับ สมการ (1) และ (2))

2.3 ตัวแปรไอโซพาชิก

ความสัมพันธ์ระหว่างตัวแปรไอโซพาชิกหรือ อันดับริ้วไอโซพาชิก N_p กับ (σ₁ + σ₂) สามารถเขียน เป็นสมการ ได้ดังนี้ [5]

$$N_{\rm p} = \frac{t}{f_{\sigma}} (\sigma_1 + \sigma_2) \tag{6}$$

สมการ (6) สามารถเขียนได้ใหม่ในพจน์ของ องค์ประกอบความเค้นระนาบ กล่าวคือ

$$N_{\rm p} = \frac{t}{f_{\sigma}} (\sigma_{xx} + \sigma_{yy}) \tag{7}$$

ME-NETT23

AMM-026109

สำหรับระบบพิกัดคาร์ทีเซียน และ

$$N_{\rm p} = \frac{t}{f_{\sigma}} (\sigma_{rr} + \sigma_{\theta\theta}) \tag{8}$$

สำหรับระบบพิกัดเชิงขั้ว

สมการ (6), (7) และ (8) ได้แสดงให้เห็นถึง ความสัมพันธ์ระหว่างอันดับริ้วไอโซพาชิกและตัวคงที่ ค่าแรกของความเค้น (first invariant of stress) สำหรับปัญหาความเค้นระนาบ นอกจากนี้พึงสังเกตว่า ค่า ($\sigma_1 + \sigma_2$) สามารถนำไปใช้ในการแยกค่าความ เค้นหลักได้โดยนำไปรวมกับค่า ($\sigma_1 - \sigma_2$) สำหรับ การแยกความเค้นหลักโดยการใช้ค่า ($\sigma_1 + \sigma_2$) เพียง อย่างเดียว สามารถกระทำได้โดยใช้วิธีการผลต่าง สืบเนื่อง (finite difference method) ในการแก้สมการ ลาปลาซ $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_1 + \sigma_2) = 0$ อย่างไรก็ตาม จะ ไม่ขอกล่าวรายละเอียด เนื่องจากอยู่นอกเหนือ วัตถุประสงค์ของบทความฉบับนี้

3. องค์ประกอบความเค้นระนาบ

บทความนี้พิจารณาปัญหาที่มีผลเฉลยแม่นตรง สองปัญหา คือ คานสี่เหลี่ยมอย่างง่ายรับแรงกระจาย แบบเอกรูป และแผ่นเรียบบางมีรูกลมตรงกลางรับ ความเค้นเฉือนล้วน โดยที่ผลเฉลยแม่นตรงเหล่านี้ได้ จากทฤษฏิสภาพยึดหยุ่น (Theory of Elasticity)

3.1 คานสี่เหลี่ยมอย่างง่ายรับแรงกระจายเอกรูป

สมการองค์ประกอบความเค้นในระบบพิกัดคาร์ที เซียนของคานสี่เหลี่ยมอย่างง่ายรับแรงกระจายเอกรูป (รูปที่ 2ก) สามารถเขียนได้ดังนี้ [6]

$$\sigma_{xx} = \frac{3p}{4c} \left(\frac{l^2}{c^2} - \frac{2}{5} \right) y + \frac{3p}{4c^3} \left(x^2 y - \frac{2}{3} y^3 \right)$$

$$\sigma_{yy} = \frac{3p}{4c} y - \frac{p}{2} - \frac{p}{4c^3}$$

$$\tau_{xy} = \frac{3p}{4c} \left(\frac{y^2}{c^2} - 1 \right) x$$
(9)

โดยที่ p คือ ความดันที่กระทำต่อพื้นที่ผิวคานด้านบน, l คือ ระยะครึ่งหนึ่งของความยาวคาน และ c คือ ระยะ ความสูงครึ่งหนึ่งของคาน

รูปที่ 2 ลักษณะทางเรขาคณิตและการกระทำของภาระ ภายนอกต่อ (ก) คานสี่เหลี่ยมอย่างง่ายรับแรงกระจาย เอกรูป และ (ข) แผ่นเรียบบางมีรูกลมตรงกลางรับ ความเค้นเฉือนล้วน

3.2 แผ่นเรียบบางมีรูกลมตรงกลางรับความเค้น เฉือนล้วน

สมการองค์ประกอบความเค้นในระบบพิกัดเชิง ขั้วของแผ่นเรียบบางมีรูกลมตรงกลางรับความเค้น เฉือนล้วน (รูปที่ 2ข) สามารถเขียนได้ดังนี้ [6]

$$\sigma_{rr} = S \left[1 + \frac{3a^4}{r^4} - \frac{4a^2}{r^2} \right] \cos 2\theta$$

$$\sigma_{\theta\theta} = -S \left[1 + \frac{3a^4}{r^4} \right] \cos 2\theta$$
 (10)

$$\tau_{r\theta} = -S \left[1 - \frac{3a^4}{r^4} + \frac{2a^2}{r^2} \right] \sin 2\theta$$

โดยที่ S คือ ค่าความเค้นเฉือนที่กระทำต่อแผ่นเรียบ บาง, a คือ รัศมีของรูกลมตรงกลาง และ r คือ รัศมี ณ ตำแหน่งที่พิจารณาใด ๆ ภายในแผ่นเรียบบาง

4. การจำลอง

ในส่วนของการจำลองนี้จะใช้วิธีการเดียวกันกับที่ คณะผู้วิจัยได้นำเสนอไว้แล้ว [1, 2] อย่างไรก็ตามจะ ขอกล่าวขั้นตอนการจำลองโดยย่อ ดังนี้

 คำนวณหาค่าองค์ประกอบความเค้นโดยอาศัย สมการ (9) หรือ (10) ณ จุดพิกัดต่าง ๆ

2. คำนวณหาค่า σ_1 และ σ_2

3. คำนวณหาค่า ϕ , $N_{
m c}$ และ $N_{
m p}$

 สร้างภาพความเข้มแสงของริ้วโฟโตอีลาสติก โดยอาศัยสมการความเข้มแสงควบคุมตามหลักการ เลื่อนเฟส 4 ขั้น

ลักษณะทางเรขาคณิตและขนาดของแรงหรือ ความเค้นที่กระทำต่อตัวแบบทั้งสอง ซึ่งใช้ในการ จำลอง มีดังนี้

• สำหรับคานสี่เหลี่ยมอย่างง่ายรับแรงกระจาย เอกรูป กำหนดให้ p = 0.3 นิวตัน/มิลลิเมตร², l = 50มิลลิเมตร, c = 10 มิลลิเมตร และ t = 10 มิลลิเมตร

สำหรับแผ่นเรียบบางมีรูกลมตรงกลางรับความ
 เค้นเฉือนล้วน กำหนดให้ S = 2.5 เมกกะปาสคาล,
 a = 50 มิลลิเมตร และ พื้นที่เท่ากับ 2c × 2c โดยที่
 c = 300 มิลลิเมตร

สำหรับเงื่อนไขการจำลองหลังจากคำนวณแล้ว เสร็จ ก็จะแปลงค่าต่าง ๆ ไปเป็นภาพ หรือที่เรียกว่า แผนภาพ (map) โดยทำการเปลี่ยนไปเป็นค่าสึในย่าน 0 ถึง 255 แบบเชิงเส้น

5. ผลลัพธ์และวิจารณ์

ในส่วนนี้จะนำเสนอผลลัพธ์ที่ได้จากการจำลองทั้ง ที่เป็นริ้วโฟโตอีลาสติก, แผนภาพ N_c , แผนภาพ N_p , แผนภาพ ($\sigma_1 - \sigma_2$) และแผนภาพ ($\sigma_1 + \sigma_2$) 5.1 ริ้วโฟโตอิลาสติก

หลังจากแทนค่าต่าง ๆ ลงในสมการความเข้มแสง ควบคุมแล้ว จะได้ภาพริ้วโฟโตอีลาสติกตามลำดับการ เลื่อนเฟส 4 ขั้น รูปที่ 5 และ 6 แสดงริ้วโฟโตอีลาสติก ของคานสี่เหลี่ยมอย่างง่ายรับแรงกระจายเอกรูป และ แผ่นเรียบบางมีรูกลมตรงกลางรับความเค้นเฉือนล้วน

พิจารณารูปที่ 5 พบว่า ริ้วไอโซคลินิก (ริ้วสีดำ) จะพาดผ่านบริเวณกึ่งกลางของคานในทุก ๆ ลำดับ ภาพ ซึ่งแสดงให้เห็นว่า บริเวณดังกล่าวเป็นแนวแกน สะเทิน และที่แกนนี้จะมีจุดหรืออาณาบริเวณ เอกลักษณ์ (isotropic points or region) ซึ่งเป็นไป ตามเงื่อนไข $\sigma_1 = \sigma_2 \neq 0$ และ ($\sigma_1 - \sigma_2$) = 0 [7]

รูปที่ 5 ภาพสี (RGB) 24 บิต ขนาด 660 จุดภาพ × 220 จุดภาพ ของคานสี่เหลี่ยมอย่างง่ายรับแรง กระจายเอกรูปที่ได้จากการจำลองตามหลักการเลื่อน เฟส 4 ขั้น (เรียงตามลำดับจากบนลงล่าง)

สำหรับริ้วไอโซโครมาติก (ริ้วสีต่าง ๆ) นั้น จะมี ลักษณะที่คล้ายกันทั้งความถี่และความโค้งที่ส่วนบน และส่วนล่าง (ดูภาพลำดับที่สามของรูปที่ 5) อย่างไรก็ ตาม หากสังเกตโดยละเอียดแล้วจะพบว่า ริ้วไอโซ-โครมาติกด้านบนนั้นจะมีจำนวนมากกว่าด้านล่าง เล็กน้อย กล่าวคือ ริ้วสีเขียวที่ผิวด้านบนจะมีพื้นที่ มากกว่าริ้วสีเขียวด้านล่าง ลักษณะดังกล่าวนี้เป็นผล ให้แนวแกนสะเทินเลื่อนลงมาทางด้านล่างเล็กน้อย

พิจารณารูปที่ 6 พบว่า ริ้วไอโซคลินิก (ริ้วสีดำ) จะมีลักษณะคล้ายกับกังหัน ซึ่งหมุนรอบจุดศูนย์กลาง ของรูกลม ลักษณะเช่นนี้สอดคล้องกับการหมุนของ แผ่นโพลาไรซ์และแผ่นวิเคราะห์ในโพลาริสโคป จาก ภาพจะเห็นได้ว่า ริ้วสีดำไม่ได้ผ่านจุดใดจุดหนึ่งที่ซ้ำ กันยกเว้นจุดศูนย์กลางซึ่งไม่มีเนื้อวัสดุ ดังนั้น ก็จะไม่

660 จุดภาพ ของแผ่นเรียบบางมีรูกลมตรงกลางรับ ความเค้นเฉือนล้วนที่ได้จากการจำลองตามหลักการ เลื่อนเฟส 4 ขั้น (เรียงตามลำดับจากซ้ายไปขวาและ บนลงล่าง)

รูปที่ 6 ภาพสี (RGB) 24 บิต ขนาด 660 จุดภาพ ×

มีจุดหรืออาณาบริเวณเอกลักษณ์ อย่างไรก็ตาม จะมี จุดเอกพจน์ที่บริเวณขอบรูกลมหลาย ๆ จุด ซึ่ง ณ จุด เหล่านี้ สภาวะความเค้นจะเป็นไปตามเงื่อนไข $\sigma_1 = \sigma_2 = 0$ และ $(\sigma_1 - \sigma_2) = 0$ [7]

พิจารณาบริเวณขอบของรูกลม พบว่า ริ้วไอโซ-โครมาติกจะมีจำนวนมาก ซึ่งต่างจากบริเวณที่ห่าง ออกไปจากขอบรูกลม ลักษณะเช่นนี้แสดงให้เห็นว่า ค่าผลต่างของความเค้นหลัก (σ₁ – σ₂) จะมีการแปร เปลี่ยนไปอย่างรวดเร็วมากแบบไร้เชิงเส้น เมื่อจุดหรือ ตำแหน่งที่พิจารณาเข้าใกล้ขอบรูกลม

5.2 ริ้วไอโซโครมาติกและริ้วไอโซพาชิก

รูปที่ 7ก, 7ข และ 7ค แสดงแผนภาพไอโซโคร-มาติกซ่อนรูป (wrapped isochromatics), แผนภาพ $(\sigma_1 - \sigma_2)$ และ แผนภาพไอโซโครมาติกเต็มรูป (unwrapped isochromatics, N_c) ของคานสี่เหลี่ยม อย่างง่ายรับแรงกระจายเอกรูป ตามลำดับ โดยรูปที่ 7ก ได้จากวิธีการคำนวณตามหลักการเลื่อนเฟส [8] รูปที่ 7 แผนภาพไอโซโครมาติก และไอโซพาชิก ของ คานสี่เหลี่ยมอย่างง่ายรับแรงกระจายเอกรูป (ก) แผนภาพไอโซโครมาติก (ข) แผนภาพ ($\sigma_1 - \sigma_2$) (ค) แผนภาพ N_c (ง) แผนภาพ ($\sigma_1 + \sigma_2$) และ (จ) แผนภาพ N_p สำหรับริ้วในรูป (ข) ถึง (จ) เป็นภาพสี เขียว (G image) ที่แยกจากภาพสามสี (RGB image)

ส่วนรูปที่ 7ข และ 7ค คำนวณมาจากภาพสีเขียวของ รูป 7ก

จากการพิจาณารูปทั้งสาม พบว่า อาณาบริเวณ เอกลักษณ์จะอยู่ตรงกลางคาน โดยมีระดับต่ำลงมา เล็กน้อยตามที่ได้กล่าวแล้วในหัวข้อ 5.1 นอกจากนี้ จากการพิจารณามุมทั้งสี่ของคานพบว่า ส่วนดังกล่าว เป็นส่วนที่ไม่มีความเค้นเกิดขึ้น ทั้งนี้เนื่องจากว่า N_c = 0 (สีดำ) ดังนั้น จุดทั้งสี่จึงเป็นจุดเอกพจน์ [7] ซึ่งสอดคล้องกับลักษณะการเปลี่ยนแปลงของริ้วตาม

รูปที่ 8 แผนภาพไอโซโครมาติก และไอโซพาซิก ของ แผ่นเรียบบางมีรูกลมตรงกลางรับความเค้นเฉือนล้วน (ก) แผนภาพไอโซโครมาติก (ข) แผนภาพ ($\sigma_1 - \sigma_2$) (ค) แผนภาพ N_c (ง) แผนภาพ ($\sigma_1 + \sigma_2$) และ (จ) แผนภาพ N_p สำหรับริ้วในรูป (ข) ถึง (จ) เป็นภาพสี เขียว (G image) ที่แยกจากภาพสามสี (RGB image)

พิกัดตำแหน่ง (gradient) กล่าวคือ ริ้วจะเปลี่ยนจากสี ดำไปเป็นสีขาว โดยเริ่มจากจุดหรืออาณาบริเวณ เอกลักษณ์ และเอกพจน์ เป็นต้นไป ซึ่งในท้ายที่สุด ผลลัพธ์ที่ได้ก็คือ รูปที่ 7ค

จากการพิจารณาแผนภาพ ($\sigma_1 + \sigma_2$) และ แผนภาพ N_p (รูปที่ 7ง และ 7จ ตามลำดับ) พบว่า ลักษณะของแผนภาพ ($\sigma_1 + \sigma_2$) จะมีความคล้ายคลึง กับแผนภาพ ($\sigma_1 - \sigma_2$) โดยที่จำนวนริ้วของแผนภาพ ($\sigma_1 + \sigma_2$) จะมีมากกว่าทั้งด้านบนและด้านล่าง นอกจากนี้ตำแหน่งหรืออาณาบริเวณไอโซทรอปิกไม่ ปรากฏในแผนภาพ ($\sigma_1 + \sigma_2$) ทั้งนี้เนื่องมาจาก เงื่อนไขที่ได้กล่าวแล้วในหัวข้อ 5.1 กล่าวคือ ที่จุดหรือ อาณาบริเวณเอกลักษณ์นั้น $\sigma_1 = \sigma_2 \neq 0$ และด้วย เหตุนี้ $(\sigma_1 + \sigma_2) \neq 0$

รูปที่ 8ก, 8ข และ 8ค แสดงแผนภาพไอโซโคร-มาติกซ่อนรูป, แผนภาพ ($\sigma_1 - \sigma_2$) และ แผนภาพไอ โซโครมาติกเต็มรูป N_c ของแผ่นเรียบบางมีรูกลมตรง กลางรับความเค้นเฉือนล้วน ตามลำดับ โดยรูปที่ 8ก ได้มาจากวิธีการคำนวณตามหลักการเลื่อนเฟส [8] ส่วนรูปที่ 8ข และ 8ค คำนวณมาจากภาพสีเขียวของ รูปที่ 8ก

พิจาณารูปที่ 8ข และ 8ค พบว่า มีความสอดคล้อง กัน กล่าวคือ บริเวณที่เป็นสีดำและขาว ในรูปที่ 8ค จะ เกิดจากการแปรเปลี่ยนของริ้วตามพิกัดตำแหน่ง นอกจากนี้ บริเวณขอบของรูกลมมีค่าความเค้นที่สูง มากและมีจุดเอกพจน์สี่จุด ซึ่งมีตำแหน่งอยู่ในแนว กึ่งกลางของริ้วขนาดใหญ่ในรูปที่ 8ก (ริ้วที่มีมุมเอียง ประมาณ 45° หรือ 135°) พิจารณารูปที่ 8ค อีกครั้ง พบว่าบริเวณที่ห่างออกไปจากรูกลมจะเป็นสีเทา ซึ่ง ลักษณะเช่นนี้สอดคล้องกับปัญหาที่รับความเค้นเฉือน ล้วน กล่าวคือ ที่บริเวณดังกล่าว ค่าของ σ_1 หรือ σ_2 จะเท่ากันแต่ σ_1 จะเป็นความเค้นดึงในขณะที่ σ_2 เป็น ความเค้นอัด ซึ่งทำให้ ($\sigma_1 - \sigma_2$) = 2S

พิจารณาแผนภาพ (σ₁ + σ₂) และ N_p (รูปที่ 8ง และ 8จ ตามลำดับ) พบว่า มีความสอดคล้องกันใน เรื่องของการแปรเปลี่ยนของริ้วต่อพิกัดตำแหน่ง ดังกล่าวแล้วข้างต้น นอกจากนี้ ที่บริเวณขอบรูกลม ความเค้นจะมีค่าสูงมากกว่าความเค้นในรูปที่ 8ค เมื่อ เปรียบเทียบจำนวนริ้วบริเวณขอบรูกลม

6. สรุปผล

บทความนี้ได้นำเสนอการจำลองสนามความเค้น ของปัญหาคานสี่เหลี่ยมอย่างง่ายรับแรงกระจายเอก รูป และแผ่นเรียบบางมีรูกลมตรงกลางรับความเค้น เฉือนล้วน การจำลองอาศัยหลักการโฟโตอีลาสติกซิตี เชิงเลขร่วมกับผลเฉลยแม่นตรงของปัญหาดังกล่าว จากทฤษฎีสภาพยืดหยุ่น ผลการจำลองทำให้ริ้วโฟโต-อีลาสติกและริ้วไอโซพาชิก ภาพริ้วโฟโตอีลาสติกทำ

ให้เห็นอาณาบริเวณที่ความเค้นมีค่าสูง ซึ่งทำให้เห็น ลักษณะของความหนาแน่นของความเค้น

การจำลองสนามความเค้นสำหรับสองปญหานี้จะ ทำให้มีสนามความเค้นเพิ่มมากขึ้นจากที่ได้นำเสนอไว้ แล้ว [1, 2] ซึ่งจะก่อให้เกิดประโยชน์หลัก ๆ สองด้าน ในอนาคต ดังนี้

ด้านการเรียนการสอน: สามารถนำภาพสนาม
 ดวามเค้นเหล่านี้ไปประกอบการเรียนการสอนใน
 รายวิชากลศาสตร์วัสดุและทฤษฏีสภาพยึดหยุ่น
 โดยเฉพาะอย่างยิ่งในหัวเรื่อง ความหนาแน่นของ
 ความเค้น นอกจากนี้การจำลองนี้ถูกเขียนขึ้นเป็น
 โปรแกรม [9] ดังนั้นการนำโปรแกรมไปใช้จะทำให้
 ผู้เรียนเห็นลักษณะสนามความเค้นที่แปรเปลี่ยนไป
 ตามการเปลี่ยนแปลงตัวแปรต่าง ๆ ที่ใช้ควบคุมการ
 จำลอง ซึ่งจะส่งผลให้ผู้เรียนเข้าใจมโนทัศน์เกี่ยวกับ
 สนามความเค้นเพิ่มมากขึ้น

ด้านงานอุตสาหกรรม: สามารถนำภาพสนาม
 ความเค้นเหล่านี้ไปใช้เป็นตัวแบบมาตรฐานในการ
 ทดสอบวิธีการต่าง ๆ ที่มีอยู่แล้วหรือที่กำลังจะสร้าง
 ขึ้นเพื่อการวิเคราะห์ตัวแปรโฟโตอีลาสติกซิตีเชิงเลข
 ของภาพสนามความเค้นจริง (stress field in real
 world) ทั้งในเรื่องของ ความถูกต้องของค่าเชิงตัวเลข
 และความรวดเร็วในการคำนวณ ซึ่งจะเป็นการเพิ่ม
 ศักยภาพการแก้ปัญหาการออกแบบชิ้นส่วนทางกล

7. เอกสารอ้างอิง

[1] ศรัณยู มั่นพิศุทธิ์ และ พิเซษฐ์ พินิจ (2551). การ ตรวจสอบผลเฉลยจากทฤษฎีสภาพยืดหยุ่นของ แผ่นวงแหวนรับแรงเข้มกดตรงกันข้ามตามแนวเส้น ผ่านศูนย์กลางด้วยวิธีวิเคราะห์ความเค้นในช่วง ยืดหยุ่นโดยแสงเชิงดิจิตอล, การประชุมวิชาการ เครือข่ายวิศวกรรมเครื่องกลแห่งประเทศไทย ครั้งที่ 22, มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต กรุงเทพ ฯ [2] ศรัณยู มั่นพิศุทธิ์ และ พิเชษฐ์ พินิจ (2551). การ จำลองภาพสนามความเค้นสองมิติของแผ่นเรียบบาง ขนาดใหญ่ที่มีรูกลมตรงกลาง, การประชุมวิชาการครุ-ศาสตร์อุตสาหกรรมแห่งชาติ ครั้งที่ 3, โรงแรมเอส ดี อเวนิว, กรุงเทพ ฯ

[3] Sadowsky, M.A. 1941. Classification of Isotropic Points as Defined by $(\sigma_1 - \sigma_2) = 0$ within a Regular Region. *Journal of Applied Physics*, vol. 12, August 1941, pp. 605-609.

[4] Ramesh, K. 2000. Digital Photoelasticity: Advanced Technique and Applications, Springer, Berlin Germany.

[5] Gdoutos, E.E. (2007). Study the caustics, isochromatic and isopachic fringes at a bi-material interface crack-tip, paper presented in *the* 13th *International Conference on Experimental Mechanics (ICEM13)*, Alexandroupolis, Greece.

[6] Volterra, E. and Gaines, J.H. (1971). *Advanced Strength of Materials*, Prentice-Hall, New Jersey, U.S.A.

[7] พิเซษฐ์ พินิจ (2552). การคันหาภาวะไร้ความ ต่อเนื่องในแผนภาพไอโซคลินิกในวิธีวิเคราะห์ความ เค้นในช่วงยืดหยุ่นด้วยแสงเชิงดิจิทัล, *วารสารวิจัยและ* พัฒนา มจธ, 32(1), มกราคม 2552, หน้า 89-103

[8] Pinit, P. and Umezaki, E. (2008). Absolute
Fringe Order Determination in Digital
Photoelasticity, Journal of Solid Mechanics and
Materials Engineering, vol. 2(4), pp. 519-529.

[9] Pinit, P. (2009). Development of Windowsbased program for analysis and visualization of two-dimensional stress field in digital photoelasticity, Songklanakarin Journal of Science and Technology, vol. 31(2), Mach. [in press]