วารสารวิชาการพระจอมเกล้าพระนครเหนือ ปีที่ 20 ฉบับที่ 3 ก.ย. - ธ.ค. 2553 The Journal of KMUTNB., Vol. 20, No. 3, Sep. - Dec. 2010

โฟโตอิลาสติกซิตีเชิงเลข ภาค 1: การได้มาซึ่งสมการความเข้มแสงควบคุม สำหรับโพลาริสโคปแบบแสงโพลาไรซ์ระนาบบนฐานตรีโกณมิติ Digital Photoelasticity Part 1: Deriving the Governing Intensity Equations for Plane Polariscope Based on Trigonometric Resolution

พิเชษฐ์ พินิจ¹

1. บทนำ

โฟโตอิลาสติกซิตีจัดเป็นวิธีการหนึ่งที่มีความ สำคัญอย่างมากสำหรับการวิเคราะห์ความเค้น ในอดีต ที่ผ่านมา แม้ว่าโฟโตอิลาสติกซิตีสามารถวิเคราะห์ ความเค้นได้ดีในรูปของข้อมูลเชิงสนาม วิธีนี้ก็ยังมีข้อ จำกัดอยู่หลายประการ เช่น ผู้วิเคราะห์ข้อมูลจะต้องมี ความรู้ความเข้าใจเกี่ยวกับทฤษฎีโฟโตอิลาสติกซิตี อย่างลึกซึ้งเพื่อการแปลความหมายของริ้วความเค้น ที่เกิดขึ้น นอกจากนี้ลักษณะการเกิดริ้วนั้นไม่สามารถ อธิบายด้วยสมการทางคณิตศาสตร์ได้ทั้งหมดจึงทำให้ ้ วิธีนี้ไม่ได้รับการสนใจเท่าที่ควร [1] ผลจากการผสมผสาน ระหว่างโฟโตอิลาสติกซิตีกับอปกรณ์ฮาร์ดแวร์ต่างๆ ทางด้านคอมพิวเตอร์รวมทั้งซอฟท์แวร์ที่ใช้ใน การวิเคราะห์ทำให้เกิดสาขาใหม่ที่มีชื่อเรียกว่า โฟโต อิลาสติกซิตีเชิงเลข (Digital Photoelasticity) วิธีใหม่นี้ ทำให้การวิเคราะห์ความเค้นมีประสิทธิภาพเพิ่มมาก ยิ่งขึ้น [2]

เนื่องจากว่ามีการใช้อุปกรณ์ฮาร์ดแวร์ เช่น กล้อง บันทึกภาพในการบันทึกภาพริ้วความเค้นเพื่อนำไป วิเคราะห์ความเค้นและกล้องบันทึกภาพก็ทำงานโดย การบันทึกความเข้มแสง จากเหตุผลดังกล่าวข้างต้น บทความนี้จะแสดงให้เห็นถึงการได้มาซึ่งสมการความ เข้มแสงควบคุมในโฟโตอิลาสติกซิตีเชิงเลขบนฐาน ตรีโกณมิติที่ซึ่งกล้องถ่ายภาพสามารถบันทึกได้ สมการ ดังกล่าวนี้เป็นสมการทางคณิตศาสตร์ที่สำคัญที่เป็น ฟังก์ชันของขนาดและทิศทางของความเค้นหลัก ซึ่งจะ ใช้อธิบายลักษณะการเกิดริ้วความเค้น

บทความนี้จะนำเสนอขั้นตอนการได้มาของสมการ ความเข้มแสงควบคุมอย่างเป็นระบบเพื่อให้ผู้ที่สนใจ สามารถเข้าใจโฟโตอิลาสติกซิตีเชิงเลขได้อย่างถูกต้อง และใช้เป็นความรู้เบื้องต้นก่อนการศึกษาเชิงลึกต่อไป

2. โพลาริสโคปและแบบจำลองทางคณิตศาสตร์ 2.1 โพลาริสโคป

การบันทึกภาพเชิงเลขจำเป็นต้องบันทึกภาพผ่าน อุปกรณ์ทางแสงที่เรียกว่า โพลาริสโคป (Polariscope) ซึ่งโดยทั่วไปแล้วแบ่งออกได้ 3 ชนิด คือ [2]

- โพลาริสโคปแบบใช้แสงโพลาไรซ์ระนาบ
- โพลาริสโคปแบบใช้แสงโพลาไรซ์วงกลม และ
- โพลาริสโคปผสมแบบใช้แสงโพลาไรซ์วงกลม

รับเมื่อ 1 ธันวาคม 2552 ตอบรับเมื่อ 13 กรกฎาคม 2553

¹ อาจารย์ ภาควิชาครุศาสตร์เครื่องกล คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี มหาวิทยาลัยเทคโนโลยี พระจอมเกล้าธนบุรี โทรศัพท์ 0-2470-8522 E-mail: pichet.pin@kmutt.ac.th

แบบแรกนั้นเป็นโพลาริสโคปแบบง่ายที่สุด (รูปที่ 1) ที่ประกอบไปด้วยแหล่งกำเนิดแสง (แสงเอกรงค์และ/ หรือแสงพหุรงค์และ/หรือแสงสีขาว) แผ่นโพลาไรซ์ (Polarizer) แผ่นวิเคราะห์ (Analyzer) ส่วนแบบที่สอง นั้นคล้ายกับแบบแรก เพียงแต่มีแผ่นเสี้ยวคลื่น (Quarterwave Plate) เพิ่มขึ้นมาจำนวนสองแผ่น โดยแผ่นเสี้ยวคลื่น จะทำให้แสงที่ผ่านตัวมันกลายเป็นแสงโพลาไรซ์วงกลม สำหรับแบบสุดท้ายเป็นแบบผสมระหว่างแบบแรกกับ แบบที่สองโดยจะมีแผ่นเสี้ยวคลื่นเพียงแผ่นเดียว ซึ่งการวาง ดำแหน่งของแผ่นเสี้ยวคลื่นนี้จะมีทั้งแบบที่วางอยู่หลัง แผ่นโพลาไรซ์หรือวางอยู่หลังตัวแบบ (Model) [2] อย่างไร ก็ตาม สำหรับบทความฉบับนี้จะเน้นเฉพาะโพลาริสโคป แบบแรกเท่านั้น

สำหรับการจัดเรียงองค์ประกอบทางแสงต่าง ๆ ใน โพลาริสโคปแบบใช้แสงโพลาไรซ์ระนาบที่นิยมใช้ในการ ศึกษาทางด้านโฟโตอิลาสติกซิตีเชิงเลขสามารถจัดเรียง ได้ดังตารางที่ 1

ตารางที่ 1 การจัดเรียงโพลาริสโคปแบบใช้แสงโพลาไรซ์ ระนาบ [2]

การจัดเรียง	แผ่นโพลาไรซ์และ แผ่นวิเคราะห์*	แผ่น เสี้ยวคลื่น	สนามแสง ฉากหลัง
โพลาริสโคปแบบ แสงโพลาไรซ์ ระนาบ	ตั้งฉาก	ไม่มี	มืด
	ขนาน	ไม่มี	สว่าง

* พิจารณาตามแนวแกนทัศน์

2.2 แบบจำลองทางคณิตศาสตร์ของความเข้มแสง

พิจารณาแสงซึ่งเคลื่อนที่ผ่านโพลาริสโคปแบบแสง โพลาไรซ์ระนาบ (รูปที่ 1) ความเข้มแสง *I* ณ จุดพิกัด (*x*, *y*) ใดๆ เมื่อเรามองผ่านแผ่นวิเคราะห์ (Analyzer) สามารถแสดงออกมาเป็นแบบจำลองทางคณิตศาสตร์ ได้ดังนี้ [3]

$$I = f(\alpha, I_{\rm p}, \phi, N, \beta, h, f_{\sigma}, I_{\rm b})$$
(1)

รูปที่ 1 โพลาริสโคปแบบแสงโพลาไรซ์พร้อมทั้งตัวแบบ ภายใต้การกระทำของแรงกด

โดยที่ $I_{\rm p}(x, y; \lambda)$ แทนความเข้มแสงโพลาไรซ์ ที่ผ่านออกมาจากแผ่นโพลาไรซ์ (Polarizer), $\phi(x, y; \alpha, \beta)$ แทนตัวแปรไอโซคลินิก (Isoclinic Parameter) หรือ ทิศทางความเค้นหลัก σ_1 โดยเทียบกับแกนอ้างอิง ตามแนวแกน $x, N(x, y; (\sigma_1 - \sigma_2)$ แทนอันดับริ้ว หรือตัวแปรไอโซโครมาติก (Isochromatic Parameter), h แทนความหนาของตัวแบบ $f_{\sigma}(\lambda)$ แทนค่าสัมประสิทธิ์ ริ้วความเค้นของวัสดุซึ่งสามารถหาได้จากวิธีการสอบ เทียบ (Calibration) $I_b(x, y; \lambda)$ แทนความเข้มแสง ฉากหลังและ λ แทนความยาวคลื่นแสงของแหล่ง กำเนิดแสง

ความสัมพันธ์ระหว่างอันดับริ้วกับตัวแปรหน่วงช้า สัมพัทธ์หรือเฟส (Relative Retardation or Phase, δ) สามารถกำหนดได้ดังนี้ [2]

$$\delta = 2\pi N$$
 was $(\sigma_1 - \sigma_2) = \frac{f_\sigma N}{h}$ (2)

โดยที่อันดับริ้ว N และเฟส δ จะสัมพันธ์โดยตรง กับค่าผลต่างของความเค้นหลัก ($\sigma_1 - \sigma_2$) เพื่อให้ง่าย ต่อการเขียนสมการทางคณิตศาสตร์ ตัวแปรอิสระต่าง ๆ เช่นพิกัด (x, y) ความหนา h ของตัวแบบหรือค่า ความยาวคลื่น λ ของแหล่งกำเนิดแสงจะถูกละไว้ในฐาน ที่เข้าใจ

ร**ูปที่ 2** พฤติกรรมทางกายภาพที่เกี่ยวกับแสงของ อุปกรณ์ทางแสงต่างๆ ในโพลาริสโคป (ก) แผ่น โพลาไรซ์หรือแผ่นวิเคราะห์ และ (ข) แผ่นหักเห ซ้อนหรือตัวแบบ

พฤติกรรมทางกายภาพของอุปกรณ์ทางแสงใน โพลาริสโคป

3.1 แผ่นโพลาไรซ์และแผ่นวิเคราะห์

รูปที่ 2ก แสดงพฤติกรรมของแผ่นโพลาไรซ์หรือ แผ่นวิเคราะห์ในการกรองลำแสงที่เคลื่อนที่ผ่านตาม แนวแกนทัศน์ (Axis of Polarization) โดยที่ลำแสงที่ เคลื่อนที่ออกจากแผ่นโพลาไรซ์หรือแผ่นวิเคราะห์ จะ กลายเป็นแสงโพลาไรซ์ที่สั่นในแนวแกนทัศน์ดังกล่าว โดยที่เฟสของแสงโพลาไรซ์จะไม่มีการเปลี่ยนแปลง

3.2 แผ่นหักเหซ้อนหรือตัวแบบ

รูปที่ 2ข แสดงพฤติกรรมของแผ่นหักเหซ้อนใน การแยกลำแสงที่ตกกระทบเป็นสององค์ประกอบที่ตั้งฉาก

รูปที่ 3 การเปลี่ยนแปลงของเวกเตอร์แสงเมื่อเคลื่อนที่ ผ่านโพลาริสโคปแบบฉากหลังมืด

ซึ่งกันและกัน เมื่อลำแสงทั้งสองออกจากแผ่นหักเหซ้อนแล้วก็ จะเกิดความแตกต่างระหว่างเฟสขึ้น โดยที่ผลต่างของเฟส ซึ่งก็คือ σ จะสัมพันธ์โดยตรงกับผลต่างของความเค้นหลัก (σ₁ – σ₂) ดังที่กล่าวแล้ว (ดูรูปที่ 1 และสมการ (3) ประกอบกัน)

4. สมการความเข้มแสงควบคุม

จากหัวข้อที่ 2 และ 3 เราได้ทราบเกี่ยวโพลาริสโคป และพฤติกรรมเชิงแสงต่างๆ ของอุปกรณ์หรือชิ้นส่วน ที่อยู่ในโพลาริสโคป ในหัวข้อนี้เราจะประยุกต์ใช้ความรู้ ดังกล่าวในการหาสมการความเข้มแสงควบคุม

4.1 สมการความเข้มแสงควบคุมแบบฉากหลังมืด

พิจารณาโพลาริสโคปในรูปที่ 3 กรณีที่แหล่ง กำเนิดแสงให้แสงเอกรงค์ไร้รูปแบบที่เป็นสีแดงออกมา เมื่อลำแสงนี้ผ่านแผ่นโพลาไรซ์ก็จะทำให้ได้แสง โพลาไรซ์ระนาบตามแนวแกนทัศน์ของแผ่นโพลาไรซ์ ดังกล่าว หากเรากำหนดให้มุม α = 90° และมุม β = 0° ก็จะได้ขนาดของเวกเตอร์แสงเป็น [2]

$$A_0 = a\cos\omega t \tag{3}$$

โดยที่ A₀ แทนองค์ประกอบของเวกเตอร์แสงที่สั่น ในแนวแกนทัศน์ของแผ่นโพลาไรซ์ a แทนแอมพลิจูด ของเวกตอร์แสง ω แทนอัตราเร็วเชิงมุมของแสงและ t แทนเวลาในการเคลื่อนที่ของแสง

เมื่อแสงโพลาไรซ์เคลื่อนที่เข้าสู่ตัวแบบ (Entering the Model) ก็จะแยกตัวออกเป็นแสงสององค์ประกอบที่ ตั้งฉากซึ่งกันและกันตามทิศทางของความเค้นหลัก σι และ σ2 หรือตามแนวแกนทัศน์ช้า (S) และแกนทัศน์ เร็ว (F) ของตัวแบบตามลำดับ โดยขนาดของเวกเตอร์ ทั้งสององค์ประกอบนั้น คือ

$$A_{1,S} = a\sin\phi\cos\omega t \tag{4}$$

$$A_{2,\mathrm{F}} = a\cos\phi\cos\omega t \tag{5}$$

หลังจากที่องค์ประกอบเวกเตอร์ทั้งสองเคลื่อนที่ ออกจากตัวแบบ (Leaving the Model) แล้ว ก็จะเกิด การเคลื่อนที่ช้าเร็วต่างกันด้วยค่าเฟส δ และถ้าหากเรา กำหนดให้การเคลื่อนที่ช้าเร็วต่างกันของแสงนี้เป็นแบบ เอกรูป (Uniform) เราก็จะได้องค์ประกอบของแสงที่มี เฟสต่างกัน คือ

$$A_{3,S} = a\sin\phi\cos\left(\omega t - \frac{\delta}{2}\right) \qquad (6)$$

$$A_{4,F} = a\cos\phi\cos\left(\omega t + \frac{\delta}{2}\right) \qquad (7)$$

เนื่องจากว่าแผ่นวิเคราะห์จะยอมให้ลำแสงผ่านได้ เฉพาะองค์ประกอบที่เคลื่อนที่ตามแนวแกนทัศน์ของตัว มันเองเท่านั้น ด้วยเหตุนี้

$$A_{5} = A_{3} \cos \phi - A_{4} \sin \phi$$

= $a \sin \phi \cos \phi \cos \left(\omega t - \frac{\delta}{2}\right)$
 $- a \sin \phi \cos \phi \cos \left(\omega t + \frac{\delta}{2}\right)$
= $\frac{a}{2} \sin 2\phi \left[\cos \omega t \cos \frac{\delta}{2} + \sin \omega t \sin \frac{\delta}{2}\right]$
 $- \frac{a}{2} \sin 2\phi \left[\cos \omega t \cos \frac{\delta}{2} - \sin \omega t \sin \frac{\delta}{2}\right]$
= $a \sin 2\phi \sin \frac{\delta}{2} \sin \omega t$ (8)

ความเข้มแสงที่เราสามารถมองเห็นหรือที่อุปกรณ์ บันทึกภาพสามารถบันทึกได้จะขึ้นอยู่กับกำลังสองของ แอมพลิจูดของเวกเตอร์แสง ดังนั้น ความเข้มแสงที่ผ่าน ออกจากแผ่นวิเคราะห์ ก็คือ

$$I_{\rm d} = a^2 \sin^2 2\phi \sin^2 \frac{\delta}{2}$$
$$= I_{\rm p} \sin^2 2\phi \sin^2 \frac{\delta}{2}$$
(9)

โดยที่ I_p(= a²) คือแสงโพลาไรซ์ที่เคลื่อนที่ออก จากแผ่นโพลาไรซ์ดังที่กล่าวแล้วข้างต้น

เนื่องจากว่าความเข้มแสงฉากหลัง *I*_b นั้นเป็น ความเข้มแสงของแสงธรรมชาติรอบ ๆ โพลาริสโคปซึ่ง ผ่านเข้ามาและทำให้เรามองเห็นได้แม้ว่าเราจะจัดตำแหน่ง ให้แกนทัศน์ของแผ่นโพลาไรซ์และแผ่นวิเคราะห์ตั้งฉาก ซึ่งกันและกันก็ตาม สมการความเข้มแสงควบคุมแบบ ฉากหลังมืดของโพลาริสโคปแบบแสงโพลาไรซ์ระนาบ (สมการ (10)) เมื่อรวมผลของความเข้มแสงฉากหลัง จึงสามารถเขียนได้ใหม่ดังนี้

$$I_{\rm d} = I_{\rm p} \sin^2 \frac{\delta}{2} \sin^2 2\phi + I_{\rm b}$$

= $I_{\rm p} \sin^2 \pi N \sin^2 2\phi + I_{\rm b}$ (10)

พึงสังเกตว่า การปรากฏขึ้นของความเข้มแสงฉาก หลัง I_b ในสมการ (10) นั้น ส่งผลให้การคำนวณหา ค่าดัวแปรไอโซคลินิก φ และตัวแปรไอโซโครมาติกหรือ เฟส δ หรืออันดับริ้ว N มีความยุ่งยากซับซ้อนมากยิ่งขึ้น อย่างไรก็ตาม ผลลัพธ์ที่ได้จะมีความถูกต้องเชิงตัวเลข มากกว่าการที่ไม่คิดอิทธิพลของความเข้มแสงฉากหลัง I_b (การใช้สมการ (9)) [2]

4.2 สมการความเข้มแสงควบคุมแบบฉากหลังสว่าง

พิจารณารูปที่ 4 เมื่อมุม α = 90° และ β = 90° เราก็จะพบว่าขนาดขององค์ประกอบเวกเตอร์ทั้งสองนั้น จะมีลักษณะที่เหมือนกับกรณีฉากหลังมืดตั้งแต่ที่เคลื่อน ผ่านออกมาจากแผ่นโพลาไรซ์และตัวแบบ ดังนั้น ขนาด ของเวกเตอร์แสงที่เคลื่อนที่ออกจากแผ่นวิเคราะห์ ก็คือ

(on onloning the drayzor)

ร**ูปที่ 4** การเปลี่ยนแปลงของเวกเตอร์แสงเมื่อเคลื่อนที่ ผ่านโพลาริสโคปแบบฉากหลังสว่าง

$$A_{5} = A_{3} \sin \phi + A_{4} \cos \phi$$

$$= a \sin^{2} \phi \cos \left(\omega t - \frac{\delta}{2}\right)$$

$$+ a \cos^{2} \phi \cos \left(\omega t + \frac{\delta}{2}\right)$$

$$= a \sin^{2} \phi \left[\cos \omega t \cos \frac{\delta}{2} + \sin \omega t \sin \frac{\delta}{2}\right]$$

$$+ a \cos^{2} \phi \left[\cos \omega t \cos \frac{\delta}{2} - \sin \omega t \sin \frac{\delta}{2}\right]$$

$$= a \cos \frac{\delta}{2} \cos \omega t$$

$$+ a \sin \frac{\delta}{2} \left[\sin^{2} \phi - \cos^{2} \phi\right] \sin \omega t$$

$$= a \cos \frac{\delta}{2} \cos \omega t - a \sin \frac{\delta}{2} \cos 2\phi \sin \omega t$$

$$= E \cos(\omega t + \gamma)$$
(11)

โดยที่

$$E = \sqrt{(-a\sin\frac{\delta}{2}\cos 2\phi)^2 + (a\cos\frac{\delta}{2})^2}$$
(12)

$$\tan \gamma = \frac{-\sin\frac{\delta}{2}\cos 2\phi}{\cos\frac{\delta}{2}} = -\tan\frac{\delta}{2}\cos 2\phi \qquad (13)$$

ทั้งนี้ E แทนแอมพลิจูดของคลื่นแสงที่รวมตัวกัน ตามแนวแกนทัศน์ของแผ่นวิเคราะห์และ 7 แทนเฟส เริ่มต้นของคลื่นแสงดังกล่าว เนื่องจากความเข้มแสงจะมีค่าเท่ากับกำลังสอง ของแอมพลิจูดดังที่กล่าวแล้ว ดังนั้น เราจะได้ว่า

$$I_{1} = a^{2} \cos^{2} \frac{\delta}{2} + a^{2} \sin^{2} \frac{\delta}{2} \cos^{2} 2\phi$$

= $a^{2}(1 - \sin^{2} \frac{\delta}{2}) + a^{2} \sin^{2} \frac{\delta}{2}(1 - \sin^{2} 2\phi)$
= $a^{2} \left[1 - \sin^{2} \frac{\delta}{2} \sin^{2} 2\phi \right]$
= $I_{p} \left[1 - \sin^{2} \frac{\delta}{2} \sin^{2} 2\phi \right]$ (14)

ซึ่งเมื่อรวมผลของความเข้มแสงฉากหลังเข้าไปใน สมการ (14) แล้ว เราก็จะได้สมการความเข้มแสง ควบคุมแบบฉากหลังสว่างของโพลาริสโคปแบบแสง โพลาไรซ์ระนาบ ดังนี้

$$I_{l} = I_{p} \left[1 - \sin^{2} \frac{\delta}{2} \sin^{2} 2\phi \right] + I_{b}$$
$$= I_{p} \left[1 - \sin^{2} \pi N \sin^{2} 2\phi \right] + I_{b}$$
(15)

4.3 การแปลความหมายของสมการความเข้มแสงควบคุม

พิจารณาสมการความเข้มแสงควบคุม (10) และ/ หรือ (15) จะเห็นได้ว่า เราสามารถแบ่งการพิจารณา ออกได้สองกรณีตามตัวแปรไอโซคลินิก φ และตัวแปร ไอโซโครมาติก δ ดังนี้

4.3.1 ตัวแปรไอโซคลินิก: $\sin^2 \phi$ 20=0

รูปที่ 5 แสดงภาพสนามไอโซคลินิกของตัวแบบ แผ่นกลมรับแรงเข้มกดในแนวเส้นผ่านศูนย์กลางที่เป็น ไปตามเงื่อนไข $\sin^2 2\phi = 0$ หรือ $2\phi = 0^\circ$ หรือ 180° ซึ่งกล่าวได้อีกนัยหนึ่งว่า เงื่อนไขนี้จะเกิดขึ้นเมื่อ $\phi = 0^\circ$ หรือ 90° หรือเมื่อแกนทัศน์ของแผ่นโพลาไรซ์ หรือแผ่นวิเคราะห์ซ้อนทับกับทิศทางความเค้นหลัก σ_1 และ/หรือ σ_2 ณ จุดใด ๆ ในตัวแบบ จุดเหล่านี้จะเรียง ตัวกันเป็นริ้วสีดำที่เรียกว่า ริ้วไอโซคลินิก

เงื่อนไขนี้ส่งผลให้ความเข้มแสงแบบฉากหลังมืด I_d มีค่าต่ำสุด (เส้นสีเหลืองในรูปที่ 5) และจะปรากฏเป็น ริ้วสีดำ (มืด) ที่มีความต่อเนื่องทั่วทั้งตัวแบบ สำหรับ การแปรเปลี่ยนของริ้วไอโซคลินิกจากตำแหน่งที่มีสีดำ วารสารวิชาการพระจอมเกล้าพระนครเหนือ ปีที่ 20 ฉบับที่ 3 ก.ย. - ธ.ค. 2553 The Journal of KMUTNB., Vol. 20, No. 3, Sep. - Dec. 2010

> ที่สุดและค่อยๆ เลือน (Fade) จากสีดำไปเป็นสีขาวก็ เป็นผลมาจากฟังก์ชันไซน์นั่นเอง เนื่องจากเงื่อนไขนี้จะ เกิดขึ้นเมื่อเกิดการซ้อนทับกันระหว่างแกนทัศน์และ ทิศทางความเค้นหลัก ดังนั้น เมื่อเราหมุนแผ่นโพลาไรซ์ และแผ่นวิเคราะห์ไปพร้อมๆ กันในขณะที่แกนทัศน์ของ แผ่นทั้งสองยังตั้งยังฉากกัน ริ้วไอโซคลินิกก็จะเคลื่อนที่ ไปยังตำแหน่งอื่นๆ ซึ่งยังคงทำให้สมการ (10) เป็นจริง

> สำหรับผลลัพธ์ที่ได้จากสมการ (15) นั้นจะมี ลักษณะเช่นเดียวกันกับที่ได้อธิบายแล้ว อย่างไรก็ตาม ลักษณะของริ้วไอโซคลินิกก็จะเปลี่ยนไป กล่าวคือ ริ้วสีดำจะกลายเป็นสีขาว ซึ่งก็เป็นไปตามเงื่อนไขทาง คณิตศาสตร์ของสมการ (15) ลักษณะเช่นนี้จะทำให้ ความเข้มแสงมีค่าสูงสุด (เส้นสีแดงในรูปที่ 5) สาเหตุ ที่เป็นเช่นนี้ก็เนื่องมาจากว่า เราพิจารณาเฉพาะพจน์ $\sin^2 2\phi$ เท่านั้น ซึ่งเป็นผลให้สมการ (15) กลายเป็น $I_p \cos^2 2\phi + I_b$ อย่างไรก็ตาม จะเห็นได้ว่าเงื่อนไข การเกิดริ้วไอโซคลินิกก็ยังคงเป็นเช่นเดิม กล่าวคือที่ $\phi = 0^\circ$ หรือ 90°

> นอกจากนี้พึงสังเกตว่า ตัวแปรไอโซคลินิกนี้จะไม่ ขึ้นอยู่กับขนาดของแรงที่กระทำต่อตัวแบบ ความยาว คลื่น (แสงเอกรงค์และ/หรือแสงพหุรงค์และ/หรือแสงสี ขาว) หรือ ขนาดของตัวแบบ ลักษณะเช่นนี้จะทำให้ ริ้วไอโซคลินิกเปลี่ยนตำแหน่งไปเมื่อแผ่นโพลาไรซ์ หรือแผ่นวิเคราะห์หมุนไปเท่านั้น

> สำหรับภาพริ้ว[่]ไอโซคลินิกที่แสดงนั้นได้มาจาก การจำลอง (Simulation) ซึ่งจะกล่าวในรายละเอียดเชิง ลึกในบทความภาคถัดๆ ไป อย่างไรก็ตาม ในส่วนของ หลักการจำลองริ้วเบื้องต้นนั้น ผู้อ่านสามารถค้นคว้า รายละเอียดเพิ่มเติมได้จากบทความของผู้เขียน [4], [5]

4.3.2 ตัวแปร ไอโซโครมาติก: $\sin^2 \pi N = 0$

เงื่อนไขนี้จะเกิดขึ้นก็ต่อเมื่อ $\pi N = 0$ หรืออันดับริ้ว N = 0, 1, 2, ... โดยที่จุดต่าง ๆ ในตัวแบบที่มีสภาวะ ผลต่างความเค้นหลัก ($\sigma_1 - \sigma_2$) ที่ทำให้อันดับริ้วมีค่าเป็น เลขจำนวนเต็มก็จะปรากฏเป็นสีดำ (ดูสมการ (2)) แต่เนื่องจากว่าความเค้นเป็นปริมาณที่มีความต่อเนื่อง

ร**ูปที่ 5** การเปลี่ยนตำแหน่งของริ้วไอโซคลินิกที่เป็นไป ตามเงื่อนไข $\sin^2 2\phi = 0$ ตามค่ามุม $\beta = 0^\circ$, 22.5°, 45° และ 67.5° ตามลำดับ (เรียงลำดับ จากซ้ายไปขวาและบนลงล่าง) ซึ่งจัดเรียงแบบ ฉากหลังมืด (สี่ภาพบน) โดยที่ $\alpha = \beta + 90^\circ$ และแบบฉากหลังสว่าง (สี่ภาพล่าง) โดยที่ $\alpha = \beta$ สำหรับเส้นสีเหลืองและสีแดงที่จะแสดง ตำแหน่งของริ้วไอโซคลินิกตามเงื่อนไขข้างต้น ในสมการ (10) และ (15) ตามลำดับ

ร**ูปที่ 6** ริ้วไอโซโครมาติก (เรียงลำดับจากซ้ายไปขวา และบนลงล่าง) ที่เป็นไปตามเงื่อนไข sin² πN = 0 ตามการจัดเรียงแบบฉากหลังมืด (สี่ภาพบน) และการจัดเรียงแบบฉากหลังสว่าง (สี่ภาพล่าง) โดยภาพแรกและภาพลำดับที่ห้าเป็นภาพที่ได้ จากการจำลองบนฐานแสงสีขาวหรือแสงพหุรงค์ แดง เขียว และน้ำเงิน ซึ่งสามารถแยกระนาบสี ออกมาได้สามสี ซึ่งก็คือสามภาพที่เหลือ ตาม ลำดับ

ดังนั้น สีดำ ณ จุดต่างๆ ที่กล่าวข้างต้นก็จะเรียงตัวกัน เป็นริ้วที่มีชื่อว่า ริ้วไอโซโครมาติก (รูปที่ 6 สี่ภาพบน) พิจารณาภาพไอโซโครมาติกแบบฉากหลังมืด ระนาบสีแดง สีเขียว และสีน้ำเงิน จะพบว่าตำแหน่งของ ริ้วสีดำนั้นจะไม่ซ้อนทับกัน โดยที่ภาพระนาบสีแดงจะมี

จำนวนริ้วสีดำน้อยที่สุด ในขณะที่ภาพระนาบสีน้ำเงินมี จำนวนริ้วสีดำมากที่สุด นอกจากนี้จะเห็นได้ว่า ณ จุด ด้านบนสุดและด้าน ล่างสุดของภาพริ้วไอโซโครมาติกซึ่งเป็นจุดที่มีแรงกด กระทำ ความถี่ของริ้วสีและริ้วสีดำจะมีค่าสูงมาก ซึ่งซื้ ให้เห็นว่า ริ้วไอโซโครมาติกมีค่าขึ้นอยู่กับขนาดของ แรงที่กระทำต่อตัวแบบ และจากที่กล่าวมาข้างต้นว่า ภาพระนาบทั้งสามสีมีจำนวนริ้วสีดำที่ต่างกัน ดังนั้นจึง นำไปสู่ข้อสรุปที่ว่า ริ้วไอโซโครมาติกจะขึ้นอยู่กับความ ยาวคลื่นแสงของแหล่งกำเนิดแสงผ่านค่าสัมประสิทธิ์ ริ้วความเค้นของวัสดุ *f*_σ (λ) ด้วยเช่นกัน (ดูสมการ (2))

สำหรับภาพไอโซโครมาติกแบบฉากหลังสว่างนั้น ก็จะมีลักษณะเช่นเดียวกับที่ได้อธิบายแล้ว อย่างไร ก็ตามลักษณะของริ้วจะเปลี่ยนไป กล่าวคือความสว่าง ของสีในแต่ละระนาบจะสลับกัน หากพิจารณาสมการ (15) อีกครั้งโดยตัดผลของตัวแปรไอโซคลินิกออก ก็จะทำให้สมการ (15) กลายเป็น $I_{\rm p}\cos^2\pi N+I_{\rm b}$ เงื่อนไขการเกิดริ้วสามารถแบ่งออกได้สองกรณีย่อย กล่าวคือกรณีที่อันดับริ้ว $N=0,1,2,\ldots$ ริ้วก็จะเป็นสี (รูปที่ 6 สี่ภาพล่าง) หรือหากเปรียบเทียบระหว่างภาพ ลำดับแรกกับลำดับที่ห้าแล้ว ริ้วก็จะเปลี่ยนจาก สีดำไปเป็นสีขาวนั้นเอง สำหรับกรณีย่อยที่สองนั้น หากพิจารณาให้ $I_{\rm p}\cos^2\pi N + I_{\rm b} = 0$ ก็จะเห็นได้ว่า $N=rac{1}{2},rac{3}{2},rac{5}{2},...$ ซึ่งชี้ให้เห็นว่าอันดับริ้วไม่ใช่จำนวน เต็ม สิ่งที่เกิดขึ้นนี้ สามารถพิสูจน์ได้โดยการเปรียบ เทียบตำแหน่งริ้วสีดำระหว่างภาพระนาบสีทั้งสามของ ริ้วไอโซโครมาติกทั้งการจัดเรียงแบบฉากหลังมืดและ ฉากหลังสว่างตามลำดับ ซึ่งจะเห็นได้ว่า ริ้วสีดำจะมี ้ตำแหน่งที่เยื้องกันเล็กน้อย สำหรับกรณีย่อยที่สองนี้จะ ไปสอดคล้องกับกรณีการใช้โพลาริสโคปแบบใช้แสง โพลาไรซ์วงกลมซึ่งรายละเอียดจะได้นำเสนอในภาคต่อไป

การรวมกันของภาพริ้วไอโซโครมาติกแบบฉากหลัง มืดและสว่างนั้นจะช่วยเพิ่มความถูกต้องในการคำนวณ หาค่าความเค้นมากยิ่งขึ้น ทั้งนี้เพราะความละเอียด ของริ้วที่อ่านได้อยู่ในระดับ 0.5 ริ้ว อย่างไรก็ตาม หากต้องการ ความละเอียดมากยิ่งขึ้นก็สามารถกระทำได้โดยอาศัย วิธีการที่เรียกว่า ริ้วพหุถูณ (Fringe Multiplication) [2]

5. อิทธิพลของแหล่งกำเนิดแสง

จากสิ่งที่ได้อธิบายข้างต้น เราจะเห็นได้ว่าความยาว คลื่นแสงมีอิทธิพลต่อตัวแปรไอโซโครมาติก (ดูรูปที่ 6) ซึ่งริ้วจะมีลักษณะเปลี่ยนตำแหน่งไปเมื่อความยาวคลื่น มีค่าที่แตกต่างกันออกไป หากเราประยุกต์ใช้สมการ (10) และ/หรือสมการ (15) กับแหล่งกำเนิดแสงเอกรงค์ก็จะ ไม่มีปัญหาใดๆ เกิดขึ้น ทั้งนี้เนื่องจากว่า การได้มาของสมการ ทั้งสองนั้นตั้งอยู่บนพื้นฐานของการใช้แหล่งกำเนิดแสง เอกรงค์ (สีแดงหรือสีอื่นใดก็ได้) อย่างไรก็ตาม หากแหล่ง กำเนิดแสงที่ใช้เป็นแสงพหุรงค์หรือแสงสีขาว คำถามจึง มีอยู่ว่า เราจะยังคงใช้สมการความเข้มแสงควบคุมได้หรือไม่?

กรณีที่แหล่งกำเนิดแสงเป็นแสงสีขาวจะส่งผลให้ สเปกตรัมแสงมีความกว้างมาก (ช่วงของแสงที่สามารถ มองเห็นได้ด้วยตาเปล่า) ดังนั้น จึงจำเป็นต้องมีการปรับ เปลี่ยนสมการ (10) และ (15) ใหม่อีกครั้งเพื่อให้ ครอบคลุมช่วงความกว้างของสเปกตรัมแสงดังกล่าว ซึ่ง สามารถเขียนได้ดังนี้

$$I_{\rm d}(\lambda) = \frac{\sin^2 2\phi}{\lambda_2 - \lambda_1} \int_{\lambda_1}^{\lambda_2} T(\lambda) F(\lambda) I_{\rm p}(\lambda) \sin^2 \pi N(\lambda) \, \mathrm{d}\lambda + \frac{1}{\lambda_2 - \lambda_1} \int_{\lambda}^{\lambda_2} T(\lambda) F(\lambda) I_{\rm b}(\lambda)$$
(16)

และ

$$I_{l}(\lambda) = \frac{1}{\lambda_{2} - \lambda_{1}} \int_{\lambda_{1}}^{\lambda_{2}} T(\lambda) F(\lambda) I_{p}(\lambda) d\lambda$$

$$- \frac{\sin^{2} 2\phi}{\lambda_{2} - \lambda_{1}} \int_{\lambda_{1}}^{\lambda_{2}} T(\lambda) F(\lambda) I_{p}(\lambda) \sin^{2} \pi N(\lambda) d\lambda$$

$$+ \frac{1}{\lambda_{2} - \lambda_{1}} \int_{\lambda_{1}}^{\lambda_{2}} T(\lambda) F(\lambda) I_{b}(\lambda)$$
(17)

ตามลำดับ โดยที่ $T(\lambda)$ และ $F(\lambda)$ แทนผลรวม ของพฤติกรรมการส่งผ่านแสงของอุปกรณ์ทางแสงใน โพลาริสโคป และฟังก์ชันการตอบสนองเชิงสเปกตรัม แสงของแผ่นรับภาพ (Spectral Filters) ที่อยู่ในกล้อง บันทึกภาพตามลำดับ ($\lambda_2 - \lambda_1$) แทนพจน์ปรับค่าเพื่อ ทำให้ค่าความเข้มแสงสุดท้ายมีค่าอยู่ระหว่าง 0 กับ 1 และความเข้มแสงฉากหลัง I_b แทนความเข้มแสงฉากหลัง รวมตลอดความกว้างของสเปกตรัมแสง (ช่วง λ_1 ถึง λ_2)

สำหรับกรณีที่ใช้แหล่งกำเนิดแสงที่เป็นแสงพหุรงค์ ซึ่งเกิดจากรวมตัวกันของแสงเอกรงค์หลาย ๆ แสงนั้น เราก็ สามารถปรับปรุงสมการ (16) และ (17) ได้ใหม่ ดังนี้ คือ

$$I_{\rm d}(\lambda_i) = I_{\rm p}(\lambda_i) \sin^2 \pi N(\lambda_i) \sin^2 2\phi + I_{\rm b}(\lambda_i)$$
(18)

และ

$$I_{l}(\lambda_{i}) = I_{p}(\lambda_{i}) \left[1 - \sin^{2} \pi N(\lambda_{i}) \sin^{2} 2\phi \right] + I_{b}(\lambda_{i})$$
(19)

ตามลำดับ โดยที่ดัชนี *i* แทนหมายเลขลำดับของแสง เอกรงค์ที่ประกอบกันขึ้นเป็นแสงพหรุงค์

หากเราพิจารณาสมการ (18) และ (19) จะเห็นได้ว่า เครื่องหมายปริพันธ์ได้หายไป ทั้งนี้เนื่องจากว่า แสง เอกรงค์เดิมที่รวมตัวกันเป็นแสงพหุรงค์นั้น แต่ละแสง จะมีความกว้างของสเปกตรัมแสงน้อยมากๆ (เกือบเป็น ความยาวคลื่นเดี่ยว) ดังนั้น จึงไม่จำเป็นต้องทำการ ปริพันธ์อีกต่อไป นอกจากนี้ ยังจะเห็นได้ว่าตัวแปร ไอโซคลินิกจะอยู่นอกเครื่องหมายปริพันธ์หรือไม่มี สัญลักษณ์การขึ้นอยู่กับความยาวคลื่น λ_i ปรากฏอยู่ใน ทุกๆ สมการ ทั้งนี้เนื่องด้วยตัวแปรไอโซคลินิกไม่ขึ้นอยู่ กับความยาวแสงดังที่ได้อธิบายมาแล้วข้างต้น

นอกจากนี้ในการคำนวณหาค่าตัวแปรไอโซคลินิก และไอโซโครมาติกนั้น นักวิจัยในสาขาโฟโตอิลาสติกซิตี มักจะกำหนดให้ความเข้มแสงฉากหลังมีค่าคงที่ในทุกๆ ความยาวคลื่นแสง ซึ่งจะเป็นผลให้ไม่ต้องทำการ ปริพันธ์พจน์ความเข้มแสงฉากหลัง [6]

6. สรุป

โฟโตอิลาสติกซิตี (แผนเดิม) เป็นวิธีการเชิงทดลอง วิธีหนึ่งที่สามารถใช้วิเคราะห์หาค่าความเค้นในทางปฏิบัติ ได้อย่างมีประสิทธิภาพ การเกิดขึ้นใหม่ของสาขาโฟโต อิลาสติกซิตีเชิงเลข ช่วยเพิ่มศักยภาพของวิธีการนี้ให้ สามารถวิเคราะห์ความเค้นได้รวดเร็วและมีความถูกต้อง มากยิ่งขึ้น

บทความฉบับนี้ได้แสดงให้เห็นถึงวิธีการให้ได้มา ซึ่งสมการความเข้มแสงควบคุมบนฐานตรีโกณมิติที่ สอดคล้องกับโพลาริสโคปแบบใช้แสงโพลาไรซ์ระนาบ สมการความเข้มแสงควบคุมนี้ถือได้ว่าเป็นส่วนสำคัญ อย่างยิ่งในการศึกษาทางด้านโฟโตอิลาสติกซิตีเซิงเลข ทั้งนี้เพราะสามารถใช้อธิบายความหมายเชิงกายภาพ ของภาพสนามความเค้นที่มองเห็นได้ด้วยตาเปล่าหรือ ที่บันทึกได้ด้วยกล้องถ่ายภาพ

ในภาคถัดไปของบทความ ผู้เขียนจะแสดงให้เห็น ถึงวิธีการได้มาของสมการความเข้มแสงควบคุมบนฐาน ตรีโกณมิติของโพลาริสโคปแบบใช้แสงโพลาไรซ์วงกลม ทั้งแบบธรรมดาและแบบผสม ซึ่งเป็นโพลาริสโคปที่ นิยมใช้ในการศึกษาทางด้านโฟโตอิลาสติกซิตีเชิงเลข

เอกสารอ้างอิง

 พิเซษฐ์ พินิจ, "ความรู้ทั่วไปเกี่ยวกับโฟโตอิลาสติก ซิดีและโฟโตอิลาสติกซิดีเชิงเลข," *วิศวกรรมสาร มข.*, ปีที่ 36, ฉบับที่ 3, หน้า 193 – 200, 2552.

- [2] K. Ramesh, *Digital Photoelasticity: advanced techniques and applications*, Berlin: Springer, 2000.
- [3] I.A. Jones and P. Wang, "An Overdetermined Phase-stepping Strategy for the Capture of High-quality Photoelastic Data," *Journal of Strain Analysis*, vol. 40, pp. 477-492, 2005.
- [4] พิเชษฐ์ พินิจ, ณัฐวัฒน์ พลอยทับทิม และ ศรัณยู มั่นพิศุทธิ์, "การจำลองแบบริ้วสนามความเค้นเพื่อวิธี วิเคราะห์ความเค้นในช่วงยืดหยุ่นด้วยแสง," ในการ ประชุมวิชาการทางวิศวกรรมศาสตรมหาวิทยาลัยสงขลา นครินทร์ ครั้งที่ 6, 8-9 พฤษภาคม 2551, มหาวิทยาลัย สงขลานครินทร์, หาดใหญ่, หน้า 659-664, 2551.
- [5] ศรัณยู มั่นพิศุทธิ์ และ พิเซษฐ์ พินิจ, "การจำลอง สนามความเค้นของคานสี่เหลี่ยมอย่างง่ายรับแรง กระจายเอกรูปและแผ่นเรียบบางมีรูกลมตรงกลาง รับความเค้นเฉือนล้วนด้วยโฟโตอีลาสติกซิดี เซิงเลข," ในการประชุมวิชาการเครือข่ายวิศวกรรม เครื่องกลแห่งประเทศไทย ครั้งที่ 23, 4-7 พฤจิกายน 2552, โรงแรมอิมพีเรียลแม่ปิง, เชียงใหม่, รหัส บทความ AMM019109, 2552.
- [6] P. Pinit and E. Umezaki, "Digitally whole-field analysis of isoclinic parameter in photoelasticity by four-step color phase-shifting technique," *Journal of Optics and Lasers in Engineering*, vol. 45, pp. 795-807, 2007.