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Abstract

This paper describes the development of a Window-based framework for analyzing and visualizing two-dimensional

stress field in digital photoelasticity. The program is implemented as stand-alone software. The program contains mainly two

parts: computational part and visual part supplemented with several image-processing functions. The computation method

used in the program for retrieval of photoelastic parameters (isoclinic and isochromatic parameters) is the phase stepping

method. The visualization links between the results and the user by a gray scale or color map of such parameters, which is

very convenient to the user for physical interpretation. With the Windows-based framework, additional modules either

computation or visualization can be simply added to the program.
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1. Introduction

Engineering design is of great importance in the engi-

neering field. Problem-solving methods can be classified into

three main types: theoretical or analytical method, numerical

method, and experimental method. Figure 1 show the diagram

of these three methods with some of their elements. Analyti-

cal method provides several (exact) solutions for particular

engineering problems and these solutions are available from

the Theory of Elasticity and/or Theory of Plasticity. Obtain-

ing these kinds of solutions requires, however, great knowl-

edge  of  mathematics  and  is  considerably  rigorous.   This

limitation brought alive the numerical method (Finite differ-

ent  method,  Finite  element  analysis,  etc)  when  digital

computers  become  available.  The  numerical  method  can

rapidly solve the problems and provide a neat visualization

of data to ease the physical interpretation. These aspects

make the numerical method widely used as they are applied

to many fields of research other than the engineering design.

It should, however, be noted here that in the context of the

engineering design any result obtained from the numerical

method is meaningless if the governing equations are not

derived from, or are inconsistent with, the theory of elastic-

ity or plasticity. The numerical method is, therefore, just a

computational tool helping the engineer’s works.

In  the  development  of  analytical  method,  other

methods  are  necessary  for  validation  since  the  analytical

method is not presented in the real world because of its
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Figure 1. Classification of problem-solving methods in mechanical

engineering.
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assumptions. However, the real world is the right place for

an experimental method. Pindera (2002) expressed the rela-

tionship as “no theory - no experiment” and “no experiment -

no  theory”.  This  statement  points  out  the  paramount

importance of the experiment. The role of the experimental

method is just to do with discovery, characterization, and

verification of the analytical method. A good explanation of

the role of the experimental method is given by Krishnaswamy

(2005). There are several techniques in the experiment such

as strain gauge method, photoelasticity, thermoelasticity, etc.

Photoelasticity is the only one technique that provides the

stress field in a visual way. It can solve both two- and three-

dimensional elastic problems. The principle of photoelastic-

ity is based on the birefringent phenomenon occurring in the

transparent materials under the application of external loads.

In 1956, the popularity of photoelasticity had dropped due to

the development of the numerical method, especially the

finite  element  analysis  (Patterson,  2002).  In  1990,  the

photoelasticity came back alive in the new form, i.e., digital

photoelasticity. Digital photoelasticity is the combination of

conventional photoelasticity and some new techniques in

data acquisition and data processing technologies and it is

known  under  the  name  of  automated  fringe  analysis.  Its

popularity  continuously  grows  with  no  signs  of  its  stop

(Patterson,  2002).  As  a  result,  any  research  activity  under

the automated fringe analysis is of great importance to the

engineering  field.  The  successful  applications  of  digital

photoelasticity can be found in the following works as an

example. Patterson and Wang (1991) developed the method

for full-field automated photoelastic analysis for the loaded

bolt. The successful applications of digital photoelasticity

going back in time before 1999 can be found in the Chen’s

book (1999), selected paper on photoelasticity. Chen et al.

(2002)  proposed  a  cost-effective  method  for  photoelastic

measurement  the  ball  screw  contact  angle.  Further,  the

application  of  the  digital  photoelasticity  to  investigate  the

dynamic bending stress of a spur gear was proposed by Wang

(2003).  Zuccarello  and  Ferrante  (2005)  used  automated

photoelasticity to determine the stress intensity factors for

biomaterial joints and Spita et al. (2006) used digital photo-

elasticity as a verification tool for validating the results of the

optimum gear tooth geometry with minimum fillet obtained

using the boundary element method. Further, Jones et al.

(2008)  investigated  the  slippage  in  shrink-fit  assemblies

using digital photoelasticity.

Though digital photoelasticity is successfully applied

to the engineering design as mentioned, it is just maturing.

The major problems in digital photoelasticity are that there

are two field parameters (see section 2.2) which, by principle,

interact on each other and the wrapped phases that have to be

unwrapped (Ramesh, 2000). The interaction between them

causes  error  in  their  final  results  after  unwrapping.  Some

researchers have paid attention to solving these problems.

Focusing on the stress field retrieved from the stress

analysis, it is very difficult for the analysts to imagine how

the stress field looks like even though they are just computing

the stress values for any point in question. A visualizing tool

based on the use of the finite element analysis can easily

provide a neat picture of the stress field (Zheng et al., 1995,

Wunche, 1999, Jeramic et al., 2002). Commercial software

in the field of the finite element analysis has this visualizing

tool.  Although  the  finite  element  analysis  is  a  powerful

technique for stress visualization, several critical parameters

come with it, one of which is the boundary conditions (BCs).

At the points or regions to which the BCs are applied (also

at the reactive points), the different stress fields would be

obtained and this is known to be due to the Saint’s Venant

principle (Frocht, 1948). On the other hand, in digital photo-

elasticity, this problem is compensated automatically since

digital photoelasticity is an experimental method and these

reflect the reality.

With the information described above, this paper is to

present a user-friendly program for the use in the digitally

photoelastic analysis. The program can be used to determine

two-dimensional photoelastic parameters (described in the

next section). These parameters are essential in photoelastic

analysis. For the simulation module, it provides the simulated

photoelastic  fringes,  which  can  be  used  to  validate  the

solutions given from the theory of elasticity.

2. Theoretical background of photoelasticity

2.1  Introduction to photoelasticity

Photoelasticity is one of the experimental methods

used for analyzing stress field. The principle of photoelasticity

depends on the birefringent phenomenon occurring in the

transparent materials under the application of external loads.

This phenomenon was first discovered by Brewster in 1816

(Patterson,  2002).  With  digital  photoelasticity,  the  stress

field is expressed as an intensity map which can be simply

recorded by digital cameras. In digital photoelasticity, vari-

ous techniques are available for solving the photoelastic

parameters and these can be mainly classified as phase shift-

ing, load stepping, three fringe photoelasticity, and Fourier

transform approach (Ramesh, 2000). Of these techniques,

the phase shifting (PST) is widely used due to its simplicity

and accuracy. Therefore, in the program developed here only

PST is considered.

2.2  Formulation of photoelastic fringes

Since the stress field is displayed as an intensity map,

it must have the intensity equation that governs the formation

of such intensity map. The intensity equation depends on the

types of polariscope used, i.e., plane polariscope, circular

polariscope, and mix-polariscope (Ramesh, 2000). However,

in this paper, only the plane polariscope is considered.

The mathematical model of the intensity coming out

of  the  plane  polariscope  (Figure  2)  can  be  expressed  as

(Jones and Wang, 2005)
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where  and  are the optical or polarizing axis of the polar-

izer and analyzer, respectively, I

p

 is the intensity coming out

of the polarizer,  is the isoclinic angle or the angle between

the 

1 

direction and the horizontal axis, N is the fringe order,

t is the thickness of the model studied, f



 is the material stress

fringe value (defined later), and I

b

 is the background intensity.

The relation between the fringe order and the relative

retardation, , is
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where C is the relative stress-optic coefficient and usually

assumed to be a constant for a material and  is the wave-

length used. Eq. (2) can be rewritten as
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where f



  =   / C which can be obtained by a calibration.

Based on the dark-field plane polariscope (Figure 2a),

the intensity equation can be written as (Ramesh, 2000)

b

22

p

)(2sin)π(sin INII   (4)

whereas the intensity equation based on the bright-field setup

(Figure 2b) is expressed as

b

22

p

)](2sin)π(sin1[ INII   (5)

Considering  Eq.  (4)  reveals  that  the  intensity  I

becomes zero or nearly zero when the fringe order N = 0, ±1,

±2, … or  =  or   ± /2. The former refers to the isochro-

matic fringe and the latter refers to the isoclinic fringe. For

the isochromatic fringe, the black fringe occurs when such

condition is fulfilled whereas for other regions, the fringe

appears as color(s) depending on the light source used, i.e.,

monochromatic light or polychromatic light.  For the iso-

clinic  fringe,  the  black  fringe  occurs  when  the  polarizing

axes of either the polarizer or the analyzer coincide with the

directions of 

1

 or 

2

. Since both parameters are continuous

over the entire model, both fringes are smooth and gradually

change point-wise.

According to Eq. (5), there is no any black fringe

appearing in the fringe field. Instead, such black fringes turn

to white. Furthermore, the isochromatic fringe occurs when

the fringe order N = 0, ±1/2, ±3/2, …, which represents a

half-fringed variation.

2.3  Determination of photoelastic parameters

To  determine  the  photoelastic  parameters,  PST  is

used. There are several approaches available depending on

the numbers of phase steps. In this paper, four-stepped PST

is considered.

2.3.1  Isoclinic parameter

By applying the four-stepped PST to Eq. (4) accord-

ing to the relation  = (m - 1)/8, four intensity equations

are given. Note that m refer to the phase step number (m = 1,

2, 3, 4). These equations are, then, mathematically combined

to get the expression of isoclinic parameter as (Pinit and

Umezaki, 2007)
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in Eqs. (8) and (9), the superscript ‘s’ denote the summation

over three wavelengths (R, G, and B) and the subscript ‘mod’

refers to the modulated intensity. It should be further noted

that  the  isoclinic  angles  obtained  using  Eq.  (6)  lie  in  the

range of 0 to +/4 with modulo /4.

2.3.2  Isochromatic parameter

Also applying the four-stepped PST to Eq. (5), four

intensity  equations  are  provided.  By  combining  the  third

equation (third intensity map of stress field) with those pre-

vious four equations yields the expression for determination

Figure 2. Plane polariscope: (a) dark-field setup and (b) bright-field

setup. These images are printed in black and white.

(a)

(b)
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of isochromatic parameter as following (Pinit and Umezaki,

2008)




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The superscript ‘r’ denotes the relative fringe order in the

range  of  0  to  0.5.  Note  that  there  are  three  maps  of  N 

r

according to the three wavelengths R, G, and B. Since the

cosine function (also inverse cosine function) is of even func-

tion, the map of the relative fringe order contains no abrupt

phase  jumps  unlike  the  map  of  isoclinics  (Eq. (6))  which

contains abrupt phase jumps due to the use of inverse tangent

function.

2.4  Unwrapping of photoelastic parameters

The problem of wrapped phase maps occurs because

the physical ranges of the isoclinic parameter and isochro-

matic parameter are of -/2 to +/2 and 0 to +, respectively.

As seen in Eqs. (6) and (10), the isoclinic parameter and iso-

chromatic parameter respectively lie only in the ranges of 0

to +/4 and 0 to 1/2. The phase unwrapping is, therefore,

required  to  bring  the  values  of  both  parameters  to  their

physical ranges.

The  isoclinic  and  isochromatic  unwrapping  algo-

rithms used here are those published elsewhere (Pinit and

Umezaki, 2007 and 2008). The general principle of phase

unwrapping can be found in the book of Ghiglia and Pritt

(1998).

3. Simulation of photoelastic fringes

To  confirm  the  performance  of  newly  developed

methods  for  solving  the  photoelastic  parameters,  such

methods have to be tested with some simulated photoelastic

fringes generated on the basis of the theory of elasticity. In

this paper, a circular disk model under diametral compress-

ion is treated as an example since its stress components are

exactly known.

The procedure of simulation is as follows (Pichet et

al, 2008);

1) Define the stress components 

xx

, 

yy

, and 

xy

. Note

that other coordinate system can be used, i.e., r- coordinate

system.  According  to  the  theory  of  elasticity,  the  stress

components are expressed as (Ramesh, 2000)
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where 

2 2 2

1

( )r x R y   , 

2 2 2

2

( )r x R y   , D and R are

the diameter and radius of the disk, respectively. The origin

of the coordinate system (x-y) is at the disk’s center.

2) Determine  the  fringe  order  using  the  equation

below for each wavelength

2 2 1/ 2
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xx yy xy

t

N
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3) Determine the isoclinic angle using

2
1

arctan

2

xy
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It is seen that Eq. (13) provides  in the range of -/4 to +/4

with modulo /2. However, this range can be easily change

to the range of 0 to +/2 by adding +/4 to all of isoclinic

values.

4) Substitute  the  fringe  order  N  and  the  isoclinic

angle  into Eqs. (4) or (5) by setting I

p

 = 255 and I

b

 = 0.

4. Implementation

The software is implemented in VC++ as stand-alone

software. It can be installed on any computer and can analyze

photoelastic parameters upon providing the photoelastic

fringe images. The software has four main modules: data

simulation, data reduction module, data visualizing module,

and image processing module. The data simulation is for the

generation of photoelastic fringes. The simulated fringes are

used  to  test  any  new  developed  technique  for  solving  the

photoelastic parameters. The data reduction module contains

a computational code, a phase unwrapping code for photo-

elastic parameters. The data visualizing module is to convert

the  data  from  the  first  module  to  forms  that  are  easy  to

interpret by the user. The patterns of visualization can be

either  gray  scale  or  color  scale  depending  on  the  user.

Further, there are several functions providing the quantita-

tive  and  qualitative  comparison.  The  last  module - image

processing module - provides some image processing func-

tions such as noise removal function, image plane splitter,

low pass and high pass filters, etc. This module helps user

for both preprocessing and post processing.

Figures  3  and  4  show  the  main  window  of  the

developed program. Figure 3 displays the simulated photo-

elastic fringe whereas Figure 4 shows the input dialog for

the generation of the opened image shown in Figure 3.

5. Results

5.1  Geometry of circular disk model and load condition

For simulation, the circular disk model with 30 mm in

diameter and 6 mm in thickness is used. Its material stress

fringe values (f



) for three RGB wavelengths are, respect-

ively, f



,R = 11.19,  f



,G = 10.01, and f



,B = 7.997 N/ (mm

fringe). These three material fringe values are used in Eq.

(12). Further, the applied load P has a value of 274 N.
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5.2  Graphical plotting for data visualization

For  data  visualization,  the  values  of  isoclinics  are

converted to the gray map using the following equation.
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and for isochromatic parameter, the gray map can be obtained

using
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In Eqs. (14) and (15), g(x, y) is the gray level value of the

pixel at the position (x, y) and INT[] gives the nearest integer.

max



  and  
min



  are  the  maximum  and  minimum  values  of

isoclinics in the range considered and N

max

 is the predefined

maximum fringe order which can take any value being greater

than unity.

 

 

Figure 3.  Main window of program after executing and opening an image. This image is printed in black and white.

Figure 4.  Input dialog to generate the fringe image shown in Figure 3. This image is printed in black and white.
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5.3  Simulated and numerical results

5.3.1  Photoelastic fringe

Figure 5a shows the photoelastic fringe of the disk

model generated using the procedure described in section 3.

The fringe contains both isochromatic (Figure 5b) and iso-

clinic  (Figure  5c)  fringes.  The  isochromatic  fringe  was

obtained from Eq. (4) without the term sin

2

2( - ) whereas

the  isoclinic  fringe  was  also  given  by  Eq.  (4)  without  the

term sin

2

(2N).

5.3.2  Isoclinic map

Using Eqs. (11), (13), and (14) yields the isoclinic map

in the range of -/4 to +/4. Figure 6a reports such map. Note

that Eq. (13) can be found in the subject of Mechanics of

Materials. However, for this problem, the equation for deter-

mination of isoclinic parameter is also expressed as (Frocht,

1948)




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
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







222

2

arctan

yxR

xy
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where  the  parameters  in  Eq.  (16)  are  the  same  as  those

mentioned in section 3.

By Eq. (16), the isoclinic values in the range of -/2

to +/2 can be simply obtained and Figure 6b show the map

in this range. It should be noted that Eq. (16) results from

the Theory of Elasticity. In photoelasticity, one cannot get

the map in the range of -/2 to +/2 directly but has to use

the phase unwrapping (see section 2.4). Applying the phase

unwrapping (Pichet and Umezaki, 2007) to the map in the

range of -/4 to +/4 yields the same map in the range of -/2

to +/2 as shown in Figure 6b.

5.3.3  Isochromatic map

Applying Eqs. (12) and (15) yield the isochromatic

map in the range of 0 to 20 fringe orders. Figure 7a displays

such isochromatic map in the spectrum color of visible light

and this shows the color map plotting in data visualization

which is convenient. Note that Eq. (12) can provide 0  N 

N

max

  +. As a result, the larger is the value of N

max

, the

smaller is the (red) circle appearing at the top and bottom of

the disk.

(a)

(b)

(c)

Figure 5. Color dark-field fringe pattern of the circular disk model

under diametral compression: (a) photoelastic fringe, (b)

isochromatic fringe, and (c) isoclinic fringe. These fringes

are printed in black and white.

(a)

(b)

Figure 6. Isoclinic maps expressed in the ranges of (a) -/4 to +/4

and (b) -/2 to +/2.
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Figure 7b reports the isochromatic map shown in the

same spectrum color; however, the map was obtained from

the phase unwrapping (Pichet and Umezaki, 2008); that is,

the relative map of isochromatics 

r

N  (Figure 5b) was given

from Eq. (10) where 0  

r

N  0.5 and it was directly put into

the phase unwrapping program. Note that the maximum

value of N obtained is approximately of 12 fringe orders. The

unreliable pixels at the top and bottom parts results from the

high fringe density due to the application of the loads. These

locations technically limit the value of N

max

 and this is the

great issue in the field of digital photoelasticity.

6. Conclusion

The  Windows-based  software  is  developed  as  a

helping tool for two-dimensional stress analysis and data

visualization. The main technique based on the digital photo-

elasticity used in the code is the phase stepping technique.

Two phase unwrapping algorithms for isoclinic and isochro-

matic  unwrapping  methods  are  implemented.  The  results

obtained on the basis of the digital photoelasticity agree well

with those obtained from the Theory of Elasticity and they

express the validity of such algorithms. As a first step, the

software developed can be used as an educational aid. Other

models having the exact solution of the stress components

can be easily simulated using the procedure mentioned in

section 3. This is useful in teaching of digital photoelasticity

and in validating any newly developed approach for analysis

of photoelastic parameters.

In order to make the software more practicable for

solving the engineering design or the industrial problems, the

following aspects are considered;

1. Since, by principle, the isochromatic parameter

pertains to the stress field of (

1

 - 

2

), the separation is needed

such that the stress components 

xx

, 

yy

, and 

xy 

or the indi-

vidual 

1

 and 

2

 are retrieved. These stress components are

subsequently used in the theories of failure for designing of

the structural members in question. The process of separa-

tion requires unwrapped isoclinic and isochromatic data,

which  are  readily  obtained  from  the  program.  Although

several researchers have proposed the separation techniques

(Ramesh, 2000), these techniques only were just applied to

the benchmark problem (see Eq. (11)) and they would fail

when being applied to complicated models such as a model

having discontinuities in the fringe field. The stress separa-

tion for complicated models should be, therefore, addressed

in the future.

2. Digital  photoelasticity  needs  the  plastic  model

such that the fringe can be viewed; therefore, performing the

real experiment may take time due to the preparation of the

models. With the new technology of rapid prototyping (RP),

construction of those models is then no longer tedious (Curtis

et al., 2003, Karalekas and Agelopoulos, 2004) in that the

complicated models can be simply manufactured. Applying

the software to the fringe images of such models built from

the RP technology could make the fringe analysis faster. This

could be beneficial for engineering design.
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