(10) Joe Student

Complete problem statement Jan. 31, 2003
Prob. 1.23. A 200-mm-long cantilever beam of circular cross section is subjected to a transverse force of 100 N at its free end. What minimum diameter d is required if the deflection 8 at the free end is not to exceed 10 mm ? The beam is made of copper ($E=130 \mathrm{GPa}$).

Solution: -

Explanatory figures) (even if not given with problem)

The deflection δ is given by

$$
\delta=\frac{P L^{3}}{3 E I} \quad \text { where } \quad I=\frac{\pi}{64} d^{4} \text {. }
$$

Therefore

$$
\begin{equation*}
\delta=\frac{P L^{3} \cdot 64}{3 E \pi d^{4}}=\frac{64 P L^{3}}{3 \pi E d^{4}} \tag{1}
\end{equation*}
$$

Solving for d yields

$$
\begin{equation*}
d=\sqrt[4]{\frac{64 P L^{3}}{3 \pi E \delta}} \approx \quad \text { Symbolic solution } \tag{2}
\end{equation*}
$$

For the given information,

No more than

$$
d=\sqrt[4]{\frac{64(100)(0.200)^{3}}{3 \pi\left(130 \times 10^{9}\right)(0.010)}}=8.04 \times 10^{-3} \mathrm{~m}
$$

3 significant figures

$$
=8.04 \mathrm{~mm} \text { Correct units Ans. }
$$

This is a minimum value, since if d were smaller than this, δ in (1) would be larger than 10 mm .

