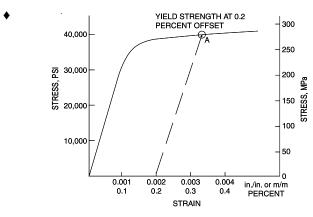
MECHANICS OF MATERIALS

UNIAXIAL STRESS-STRAIN

Stress-Strain Curve for Mild Steel



The slope of the linear portion of the curve equals the modulus of elasticity.

DEFINITIONS

Engineering Strain

 $\varepsilon = \Delta L/L_o$, where

engineering strain (units per unit), ε =

change in length (units) of member, ΔL =

 L_o original length (units) of member.

Percent Elongation

% Elongation = $\left(\frac{\Delta L}{L_0}\right) \times 100$

Percent Reduction in Area (RA)

The % reduction in area from initial area, A_i , to final area, A_f , is:

$$\% RA = \left(\frac{A_i - A_f}{A_i}\right) \times 100$$

Shear Stress-Strain

 $\gamma = \tau/G$, where

shear strain. γ =

shear stress, and τ =

shear modulus (constant in linear torsion-rotation G = relationship).

$$G = \frac{E}{2(1+v)}$$
, where

modulus of elasticity Ε =

= Poisson's ratio, and v

- (lateral strain)/(longitudinal strain).

Uniaxial Loading and Deformation

$$\sigma = P/A$$
, where

- stress on the cross section, σ
- Р loading, and =
- cross-sectional area. A =

$$\varepsilon = \delta/L$$
, where

- elastic longitudinal deformation and δ
- L length of member. =

δ

$$E = \sigma/\varepsilon = \frac{P/A}{\delta/L}$$
$$\delta = \frac{PL}{AE}$$

True stress is load divided by actual cross-sectional area whereas engineering stress is load divided by the initial area.

THERMAL DEFORMATIONS

 $\delta_t = \alpha L (T - T_o)$, where

- δ, = deformation caused by a change in temperature,
- temperature coefficient of expansion, = α
- L = length of member,
- Т = final temperature, and
- T_{o} initial temperature.

CYLINDRICAL PRESSURE VESSEL

Cylindrical Pressure Vessel

For internal pressure only, the stresses at the inside wall are:

$$\sigma_t = P_i \frac{r_o^2 + r_i^2}{r_o^2 - r_i^2} \quad \text{and} \quad \sigma_r = -P_i$$

For external pressure only, the stresses at the outside wall are:

$$\sigma_t = -P_o \frac{r_o^2 + r_i^2}{r_o^2 - r_i^2} \quad \text{and} \quad \sigma_r = -P_o, \text{ where}$$

- tangential (hoop) stress, = σ,
- = radial stress. σ_r
- internal pressure, P_i =
- P_{o} = external pressure,
- = inside radius, and r_i
- outside radius. = r_o

For vessels with end caps, the axial stress is:

$$\sigma_a = P_i \frac{r_i^2}{r_o^2 - r_i^2}$$

 σ_t , σ_r , and σ_a are principal stresses.

+ Flinn, Richard A. & Paul K. Trojan, Engineering Materials & Their Applications, 4th ed., Houghton Mifflin Co., Boston, 1990.

When the thickness of the cylinder wall is about one-tenth or less of inside radius, the cylinder can be considered as thinwalled. In which case, the internal pressure is resisted by the hoop stress and the axial stress.

$$\sigma_t = \frac{P_i r}{t}$$
 and $\sigma_a = \frac{P_i r}{2t}$

where t = wall thickness.

STRESS AND STRAIN

Principal Stresses

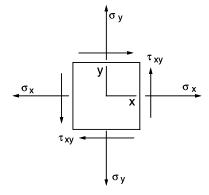
For the special case of a *two-dimensional* stress state, the equations for principal stress reduce to

$$\sigma_a, \sigma_b = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
$$\sigma_c = 0$$

The two nonzero values calculated from this equation are temporarily labeled σ_a and σ_b and the third value σ_c is always zero in this case. Depending on their values, the three roots are then labeled according to the convention:

algebraically largest = σ_1 , algebraically smallest = σ_3 , other = σ_2 . A typical 2D stress element is shown below with all indicated components shown in their positive sense.

٠



Mohr's Circle - Stress, 2D

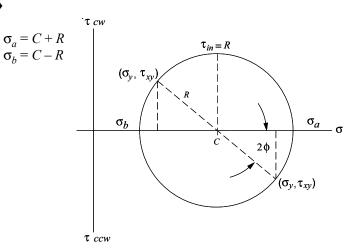
To construct a Mohr's circle, the following sign conventions are used.

- 1. Tensile normal stress components are plotted on the horizontal axis and are considered positive. Compressive normal stress components are negative.
- 2. For constructing Mohr's circle only, shearing stresses are plotted above the normal stress axis when the pair of shearing stresses, acting on opposite and parallel faces of an element, forms a clockwise couple. Shearing stresses are plotted below the normal axis when the shear stresses form a counterclockwise couple.

The circle drawn with the center on the normal stress (horizontal) axis with center, *C*, and radius, *R*, where

$$C = \frac{\sigma_x + \sigma_y}{2}, \quad R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

The two nonzero principal stresses are then:



The maximum *inplane* shear stress is $\tau_{in} = R$. However, the maximum shear stress considering three dimensions is always

$$\tau_{max}=\frac{\sigma_1-\sigma_3}{2}.$$

Hooke's Law

Three-dimensional case:

$$\begin{aligned} \boldsymbol{\varepsilon}_{x} &= (1/E)[\boldsymbol{\sigma}_{x} - \boldsymbol{v}(\boldsymbol{\sigma}_{y} + \boldsymbol{\sigma}_{z})] & \boldsymbol{\gamma}_{xy} = \boldsymbol{\tau}_{xy}/G \\ \boldsymbol{\varepsilon}_{y} &= (1/E)[\boldsymbol{\sigma}_{y} - \boldsymbol{v}(\boldsymbol{\sigma}_{z} + \boldsymbol{\sigma}_{x})] & \boldsymbol{\gamma}_{yz} = \boldsymbol{\tau}_{yz}/G \\ \boldsymbol{\varepsilon}_{z} &= (1/E)[\boldsymbol{\sigma}_{z} - \boldsymbol{v}(\boldsymbol{\sigma}_{x} + \boldsymbol{\sigma}_{y})] & \boldsymbol{\gamma}_{zx} = \boldsymbol{\tau}_{zx}/G \end{aligned}$$

Plane stress case (
$$\sigma_z = 0$$
):
 $\varepsilon_x = (1/E)(\sigma_x - v\sigma_y)$
 $\varepsilon_y = (1/E)(\sigma_y - v\sigma_x)$
 $\varepsilon_z = -(1/E)(v\sigma_x + v\sigma_y)$

$$\begin{cases} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{cases} = \frac{E}{1 - v^2} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1 - v}{2} \end{bmatrix} \begin{cases} \varepsilon_x \\ \varepsilon_y \\ \tau_{xy} \end{cases}$$

Uniaxial case ($\sigma_y = \sigma_z = 0$): $\sigma_x = E\varepsilon_x$ or $\sigma = E\varepsilon$, where ε_x , ε_y , $\varepsilon_z =$ normal strain, σ_x , σ_y , $\sigma_z =$ normal stress, γ_{xy} , γ_{yz} , $\gamma_{zx} =$ shear strain, τ_{xy} , τ_{yz} , $\tau_{zx} =$ shear stress, E = modulus of elasticity, G = shear modulus, and v = Poisson's ratio.

• Crandall, S.H. and N.C. Dahl, An Introduction to Mechanics of Solids, McGraw-Hill, New York, 1959.

STATIC LOADING FAILURE THEORIES

See MATERIALS SCIENCE/STRUCTURE OF MATTER for Stress Concentration in Brittle Materials.

MATTER for Stress Concentration in Brittle Materials.

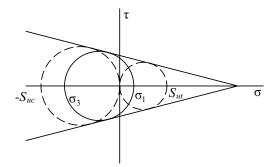
Brittle Materials

Maximum-Normal-Stress Theory

The maximum-normal-stress theory states that failure occurs when one of the three principal stresses equals the strength of the material. If $\sigma_1 \ge \sigma_2 \ge \sigma_3$, then the theory predicts that failure occurs whenever $\sigma_1 \ge S_{ut}$ or $\sigma_3 \le -S_{uc}$ where S_{ut} and S_{uc} are the tensile and compressive strengths, respectively.

Coulomb-Mohr Theory

The Coulomb-Mohr theory is based upon the results of tensile and compression tests. On the σ , τ coordinate system, one circle is plotted for S_{ut} and one for S_{uc} . As shown in the figure, lines are then drawn tangent to these circles. The Coulomb-Mohr theory then states that fracture will occur for any stress situation that produces a circle that is either tangent to or crosses the envelope defined by the lines tangent to the S_{ut} and S_{uc} circles.



If $\sigma_1 \ge \sigma_2 \ge \sigma_3$ and $\sigma_3 < 0$, then the theory predicts that yielding will occur whenever

$$\frac{\sigma_1}{S_{ut}} - \frac{\sigma_3}{S_{uc}} \ge 1$$

Ductile Materials

Maximum-Shear-Stress Theory

The maximum-shear-stress theory states that yielding begins when the maximum shear stress equals the maximum shear stress in a tension-test specimen of the same material when that specimen begins to yield. If $\sigma_1 \ge \sigma_2 \ge \sigma_3$, then the theory predicts that yielding will occur whenever $\tau_{max} \ge S_y/2$ where S_y is the yield strength.

$$\tau_{max}=\frac{\sigma_1-\sigma_3}{2}.$$

Distortion-Energy Theory

The distortion-energy theory states that yielding begins whenever the distortion energy in a unit volume equals the distortion energy in the same volume when uniaxially stressed to the yield strength. The theory predicts that yielding will occur whenever

$$\left[\frac{(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{1} - \sigma_{3})^{2}}{2}\right]^{1/2} \ge S_{y}$$

The term on the left side of the inequality is known as the effective or Von Mises stress. For a biaxial stress state the effective stress becomes

$$\sigma' = \left(\sigma_A^2 - \sigma_A \sigma_B + \sigma_B^2\right)^{1/2}$$

or
$$\sigma' = \left(\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{xy}^2\right)^{1/2}$$

where σ_A and σ_B are the two nonzero principal stresses and σ_x , σ_y , and τ_{xy} are the stresses in orthogonal directions.

VARIABLE LOADING FAILURE THEORIES

<u>Modified Goodman Theory:</u> The modified Goodman criterion states that a fatigue failure will occur whenever

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_{ut}} \ge 1 \quad \text{or} \quad \frac{\sigma_{\max}}{S_y} \ge 1, \quad \sigma_m \ge 0,$$

where

 S_e = fatigue strength, S_{ut} = ultimate strength, S_y = yield strength, σ_a = alternating stress, and σ_m = mean stress. σ_{max} = $\sigma_m + \sigma_a$

<u>Soderberg Theory:</u> The Soderberg theory states that a fatigue failure will occur whenever

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_y} \ge 1 \qquad \sigma_m \ge 0$$

Endurance Limit for Steels: When test data is unavailable, the endurance limit for steels may be estimated as

$$S'_{e} = \begin{cases} 0.5 S_{ut}, S_{ut} \le 1,400 \text{ MPa} \\ 700 \text{ MPa}, S_{ut} > 1,400 \text{ MPa} \end{cases}$$

Endurance Limit Modifying Factors: Endurance limit modifying factors are used to account for the differences between the endurance limit as determined from a rotating beam test, S'_e , and that which would result in the real part, S_e .

$$S_e = k_a k_b k_c k_d k_e S'_a$$

where

Surface Factor, $k_a = aS_{ut}^b$

Surface	Fact	Exponent	
Finish	kpsi	MPa	b
Ground	1.34	1.58	-0.085
Machined or CD	2.70	4.51	-0.265
Hot rolled	14.4	57.7	-0.718
As forged	39.9	272.0	-0.995

Size Factor, k_b :

For bending and torsion:

$d \leq 8 \text{ mm};$	$k_b = 1$
8 mm \le <i>d</i> \le 250 mm;	$k_b = 1.189d _{eff}^{-0.097}$
d > 250 mm;	$0.6 \le k_b \le 0.75$
For axial loading:	$k_b = 1$

Load Factor, k_c :

$k_c = 0.923$	axial loading, $S_{ut} \leq 1,520$ MPa
$k_c = 1$	axial loading, $S_{ut} > 1,520$ MPa
$k_c = 1$	bending
$k_c = 0.577$	torsion

Temperature Factor, k_d : for T ≤ 450°C, $k_d = 1$

Miscellaneous Effects Factor, k_e : Used to account for strength reduction effects such as corrosion, plating, and residual stresses. In the absence of known effects, use $k_e = 1$.

TORSION

Torsion stress in circular solid or thick-walled (t > 0.1 r) shafts:

$$\tau = \frac{Tr}{J}$$

where J = polar moment of inertia (see table at end of **STATICS** section).

TORSIONAL STRAIN

$$\gamma_{\phi z} = \underset{\Delta z \to 0}{\operatorname{limit}} r(\Delta \phi / \Delta z) = r(d\phi / dz)$$

The shear strain varies in direct proportion to the radius, from zero strain at the center to the greatest strain at the outside of the shaft. $d\phi/dz$ is the twist per unit length or the rate of twist.

$$\tau_{\phi z} = G\gamma_{\phi z} = Gr(d\phi/dz)$$

$$T = G(d\phi/dz) \int_{A} r^{2} dA = GJ(d\phi/dz)$$

$$\phi = \int_{o}^{L} \frac{T}{GJ} dz = \frac{TL}{GJ}, \text{ where}$$

 ϕ = total angle (radians) of twist,

T =torque, and

L =length of shaft.

 T/ϕ gives the *twisting moment per radian of twist*. This is called the *torsional stiffness* and is often denoted by the symbol k or c.

For Hollow, Thin-Walled Shafts

$$\tau = \frac{T}{2A_m t}$$
, where

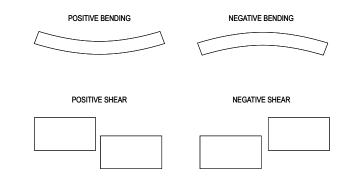
t =thickness of shaft wall and

 A_m = the total mean area enclosed by the shaft measured to the midpoint of the wall.

BEAMS

Shearing Force and Bending Moment Sign Conventions

- 1. The bending moment is *positive* if it produces bending of the beam *concave upward* (compression in top fibers and tension in bottom fibers).
- 2. The shearing force is *positive* if the *right portion of the beam tends to shear downward with respect to the left.*



 Timoshenko, S. and Gleason H. MacCullough, *Elements of Strengths of Materials*, K. Van Nostrand Co./Wadsworth Publishing Co., 1949. The relationship between the load (q), shear (V), and moment (M) equations are:

$$q(x) = -\frac{dV(x)}{dx}$$
$$V = \frac{dM(x)}{dx}$$
$$V_2 - V_1 = \int_{x_1}^{x_2} [-q(x)] dx$$
$$M_2 - M_1 = \int_{x_1}^{x_2} V(x) dx$$

Stresses in Beams

 $\varepsilon_x = -y/\rho$, where

- ρ = the radius of curvature of the deflected axis of the beam, and
- y = the distance from the neutral axis to the longitudinal fiber in question.

Using the stress-strain relationship $\sigma = E\varepsilon$, Axial Stress: $\sigma_x = -Ey/\rho$, where

 σ_x = the normal stress of the fiber located *y*-distance from the neutral axis.

 $1/\rho = M/(EI)$, where

M = the moment at the section and

I = the *moment of inertia* of the cross section.

 $\sigma_x = -My/I$, where

y = the distance from the neutral axis to the fiber location above or below the axis. Let y = c, where c = distance from the neutral axis to the outermost fiber of a symmetrical beam section.

 $\sigma_x = \pm Mc/I$

Let S = I/c: then, $\sigma_x = \pm M/S$, where

S = the *elastic section modulus* of the beam member.

Transverse shear flow: q = VQ/I and

Transverse shear stress: $\tau_{xy} = VQ/(Ib)$, where

q = shear flow,

 τ_{xy} = shear stress on the surface,

$$V =$$
 shear force at the section,

b = width or thickness of the cross-section, and

$$Q = A' \overline{y'}$$
, where

- A' = area above the layer (or plane) upon which the desired transverse shear stress acts and
- $\overline{y'}$ = distance from neutral axis to area centroid.

Deflection of Beams

Using $1/\rho = M/(EI)$,

$$EI\frac{d^2y}{dx^2} = M, \text{ differential equation of deflection curve}$$
$$EI\frac{d^3y}{dx^3} = dM(x)/dx = V$$
$$EI\frac{d^4y}{dx^4} = dV(x)/dx = -q$$

Determine the deflection curve equation by double integration (apply boundary conditions applicable to the deflection and/or slope).

 $EI (dy/dx) = \int M(x) dx$ $EIy = \int [\int M(x) dx] dx$

The constants of integration can be determined from the physical geometry of the beam.

COLUMNS

For long columns with pinned ends: Euler's Formula

$$P_{cr} = \frac{\pi^2 EI}{\ell^2}$$
, where

 P_{cr} = critical axial loading,

 ℓ = unbraced column length.

substitute $I = r^2 A$:

$$\frac{P_{cr}}{A} = \frac{\pi^2 E}{\left(\ell/r\right)^2}$$
, where

r = radius of gyration and

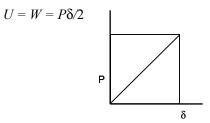
 $\ell/r = slenderness ratio$ for the column.

For further column design theory, see the **CIVIL ENGINEERING** and **MECHANICAL ENGINEERING** sections.

ELASTIC STRAIN ENERGY

If the strain remains within the elastic limit, the work done during deflection (extension) of a member will be transformed into potential energy and can be recovered.

If the final load is *P* and the corresponding elongation of a tension member is δ , then the total energy *U* stored is equal to the work *W* done during loading.



The strain energy per unit volume is $u = U/AL = \sigma^2/2E$

MATERIAL PROPERTIES

Material	Units	Steel	Aluminum	Cast Iron	Wood (Fir)
Modulus of Elasticity, E	Mpsi	29.0	10.0	14.5	1.6
	GPa	200.0	69.0	100.0	11.0
Modulus of	Mpsi	11.5	3.8	6.0	0.6
Rigidity, G	GPa	80.0	26.0	41.4	4.1
Poisson's Ratio, v		0.30	0.33	0.21	0.33
Coefficient of Thermal	$10^{-6}/{}^{\circ}F$	6.5	13.1	6.7	1.7
Expansion, α	10 ⁻⁶ /°C	11.7	23.6	12.1	3.0

	$\delta_{max} = \frac{Pa^2}{6EI}(3L - a) \qquad $	$\frac{wL^4}{8EI} \qquad \qquad$	$\frac{ML^2}{2EI} \qquad \qquad$	$\delta_{max} = \frac{Pb(L^2 - b^2)^{3/2}}{9\sqrt{3}LEI} \qquad \qquad$	$\frac{wL^4}{84EI}$ $\phi_1 = \phi_2 = \frac{wL^3}{24EI}$	$\left \delta_{max}\right = \frac{wL}{384EI} \frac{4}{384EI} \text{at } x = \frac{L}{2} \text{at } x = \frac{1}{2} \pm \frac{L}{\sqrt{12}}$
Beam Deflection Formulas – Special Cases (δ is positive downward)	$\delta = \frac{Pa^2}{6EI}(3x - a), \text{ for } x > a$ $\delta = \frac{Px^2}{6EI}(-x + 3a), \text{ for } x \le a$	$\delta = \frac{w x^2}{24EI} \left(x^2 + 6L^2 - 4Lx \right) \qquad \qquad \delta_{max} = \frac{wL^4}{8EI}$	$\delta = \frac{Mx^2}{2EI} \qquad \qquad$	$\delta = \frac{Pb}{6LEI} \left[\frac{L}{b} (x-a)^3 - x^3 + (L^2 - b^2) x \right], \text{ for } x > a \qquad \delta_{max} = \frac{F}{b}$ $\delta = \frac{Pb}{6LEI} \left[-x^3 + (L^2 - b^2) x \right], \text{ for } x \le a$	$\delta = \frac{wx}{24EI} \left(L^3 - 2Lx^2 + x^3 \right)$ $\delta_{max} = \frac{5wL^4}{384EI}$	$\delta(x) = \frac{wx^2}{24EI} \left(L^2 - Lx + x^2\right) \qquad \left \delta_{max}\right = \frac{1}{2}$
	$y \rightarrow a \rightarrow b \rightarrow b$	W (LOAD PER UNIT LENGTH)	y	$\phi_1 \underbrace{\underbrace{\begin{array}{c} y \\ \downarrow} \\ \downarrow \\ \downarrow \\ \downarrow \\ R_1 \\ R_1 \\ R_2 \\ $	$\phi_1 \underbrace{\swarrow}_{X} w \text{ (LOAD PER UNIT LENGTH)} \phi_2$ $\phi_1 \underbrace{\swarrow}_{X} w \text{ (LOAD PER UNIT LENGTH)} \phi_2$ $R_1 = w L/2 \qquad R_2 = w L/2$	$R_{1} = R_{2} = \frac{w}{2} \text{ and } M_{1} = M_{2} = \frac{w}{12}$