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UNIAXIAL STRESS-STRAIN
Stress-Strain Curve for Mild Steel
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The slope of the linear portion of the curve equals the
modulus of elasticity.

DEFINITIONS

Engineering Strain
€ =AL/L , where

€ = engineering strain (units per unit),
AL = change in length (units) of member,
L, = original length (units) of member.

Percent Elongation

% Elongation =

AL
LU)X 100

Percent Reduction in Area (RA)
The % reduction in area from initial area, 4,, to final area,
Ay, is:
' A — A,
%RA = (Tf) X 100
Shear Stress-Strain
Y = v/G, where

Y = shear strain,

A
|

shear stress, and

G = shear modulus (constant in linear torsion-rotation
relationship).

G = L, where

2(1 +v)
= modulus of elasticity
Poisson’s ratio, and
= — (lateral strain)/(longitudinal strain).

< m
I

Uniaxial Loading and Deformation

G = P/A, where
o = stress on the cross section,
P = loading, and
A = cross-sectional area.
€ = o/L, where
& = elastic longitudinal deformation and
L = length of member.
_ _P/4
E=0/e= 5/1
_ PL
0 = AE

True stress is load divided by actual cross-sectional area
whereas engineering stress is load divided by the initial area.

THERMAL DEFORMATIONS
8,=0aL(T—-T,), where

8, = deformation caused by a change in temperature,
o = temperature coefficient of expansion,

L = length of member,

T = final temperature, and

T, = initial temperature.

CYLINDRICAL PRESSURE VESSEL

Cylindrical Pressure Vessel
For internal pressure only, the stresses at the inside wall are:
2, .2

o+
0,=F-%—%5 and o, =-F

~
|
oy

For external pressure only, the stresses at the outside wall are:
2

0, =—F, r"z * r"z and o0,=—F,, where
nh =4
o6, = tangential (hoop) stress,
o6, = radial stress,
P, = internal pressure,
P, = external pressure,
r; = inside radius, and
r = outside radius.

o
For vessels with end caps, the axial stress is:

l"2

0, =h—"—

Iy — 1

6, 0,, and G, are principal stresses.

+ Flinn, Richard A. & Paul K. Trojan, Engineering Materials & Their Applications,
4th ed., Houghton Mifflin Co., Boston, 1990.
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When the thickness of the cylinder wall is about one-tenth or
less of inside radius, the cylinder can be considered as thin-
walled. In which case, the internal pressure is resisted by the
hoop stress and the axial stress.

Pr

j— L

G’_t

Pr

L

2t

and o, =

where ¢ = wall thickness.

STRESS AND STRAIN

Principal Stresses
For the special case of a two-dimensional stress state, the
equations for principal stress reduce to

2
o, +0 0, — 0,
0, 0p = "2 yi/("z V‘)+riy

The two nonzero values calculated from this equation are
temporarily labeled 6, and 6, and the third value G, is always
zero in this case. Depending on their values, the three roots are
then labeled according to the convention:

algebraically largest = G, algebraically smallest = G5,

other = G,. A typical 2D stress element is shown below with
all indicated components shown in their positive sense.

L

Oy

Oyx O x

Txy =——T—

Oy

Mohr’s Circle — Stress, 2D

To construct a Mohr’s circle, the following sign conventions

are used.

1. Tensile normal stress components are plotted on the
horizontal axis and are considered positive. Compressive
normal stress components are negative.

2. For constructing Mohr’s circle only, shearing stresses
are plotted above the normal stress axis when the pair of
shearing stresses, acting on opposite and parallel faces of
an element, forms a clockwise couple. Shearing stresses
are plotted below the normal axis when the shear stresses
form a counterclockwise couple.
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The circle drawn with the center on the normal stress
(horizontal) axis with center, C, and radius, R, where

_0,+0, B (Gx—dy
C=—7— R‘/T

2

xy

The two nonzero principal stresses are then:
¢
T ew
o,=C+R
0,=C-R

T ccw

The maximum inplane shear stress is T,, = R. However, the
maximum shear stress considering three dimensions is always

0; — 03
Tmax = 2 M
Hooke's Law

Three-dimensional case:

e, = (I/E)[o,—v(c,* 0,)] Yo = T,/G
e, = (I/E)[o,—v(c,+ 6,)] Y. =1,./G
e, = (I/E)[o,—v(o,* 0))] Y., =T.,./G
Plane stress case (0,= 0):
e, = (I/E)(c,—vo)) o, 1 v 0 |[e
_ __FE
e, = (I/E)(c,—vo,) 0,¢= Y v 1 : Ev g,
e.=—(I/E)vo, +vo) (T 00 (T

Uniaxial case (Gy =0,=0). o©,=FEe orc=Ee, where

€. €, 8= normal strain,
6,,0,, 0, = normal stress,
Yy Yy Yo = shear strain,
Tyy» Tyzs T, = shear stress,
E =modulus of elasticity,
G = shear modulus, and

vy = Poisson’s ratio.

¢ Crandall, S.H. and N.C. Dahl, An Introduction to Mechanics of Solids, McGraw-Hill, New York, 1959.



STATIC LOADING FAILURE THEORIES

See MATERIALS SCIENCE/STRUCTURE OF
MATTER for Stress Concentration in Brittle Materials.

Brittle Materials

Maximum-Normal-Stress Theory

The maximum-normal-stress theory states that failure occurs
when one of the three principal stresses equals the strength
of the material. If 6, > 0, >G5, then the theory predicts that
failure occurs whenever 6, 2§, or 03 <— S, where §,,and
S, are the tensile and compressive strengths, respectively.

Coulomb-Mohr Theory

The Coulomb-Mohr theory is based upon the results of tensile
and compression tests. On the o, T coordinate system, one
circle is plotted for S,,and one for S,,.. As shown in the figure,
lines are then drawn tangent to these circles. The Coulomb-
Mohr theory then states that fracture will occur for any stress
situation that produces a circle that is either tangent to or
crosses the envelope defined by the lines tangent to the S, , and
S, circles.

If 6, 20,20, and 6, <0, then the theory predicts that
yielding will occur whenever

[
SM[ SMC

Ductile Materials

Maximum-Shear-Stress Theory

The maximum-shear-stress theory states that yielding begins
when the maximum shear stress equals the maximum shear
stress in a tension-test specimen of the same material when
that specimen begins to yield. If 6, 2 G, 2 03, then the theory
predicts that yielding will occur whenever T, > S, /2 where
S is the yield strength.

0, — 03
Tmax = 2 .

Distortion-Energy Theory

The distortion-energy theory states that yielding begins
whenever the distortion energy in a unit volume equals the
distortion energy in the same volume when uniaxially stressed
to the yield strength. The theory predicts that yielding will
occur whenever

L 1/2

(0, — 62)2 + (0, —2 (53)2 + (0, — 03) > s,

The term on the left side of the inequality is known as the
effective or Von Mises stress. For a biaxial stress state the
effective stress becomes

, 1/2
o = (Gi — 6,05 + 03)

or
1/2

’

o' = (02— 0,0, + 0} + 373

where 6, and 6 are the two nonzero principal stresses and ,,
G,, and T, are the stresses in orthogonal directions.

VARIABLE LOADING FAILURE THEORIES
Modified Goodman Theory: The modified Goodman criterion
states that a fatigue failure will occur whenever

(9 9

Stz o ngx > 1, g, =0,
where
S, = fatigue strength,
S,, = ultimate strength,
S, = yieldstrength,
6, = alternating stress, and
G, = mean stress.
Cpax = Opt O,

Soderberg Theory: The Soderberg theory states that a fatigue
failure will occur whenever

9% 4 Om >
s TS =1

G, >0

Endurance Limit for Steels: When test data is unavailable, the
endurance limit for steels may be estimated as

o _ [ 055,8, = 1,400 MPa
¢ = 1700 MPa, S,, > 1,400 MPa
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Endurance Limit Modifying Factors: Endurance limit
modifying factors are used to account for the differences
between the endurance limit as determined from a rotating
beam test, S’,, and that which would result in the real part, S,,.

S, = k,kyk.k kS,

where

— . qb
Surface Factor, k, = aS,,

Surface Factor a Exponent
Finish kpsi MPa b
Ground 1.34 1.58 —0.085
Machined or
2. 4.51 -0.2
cD 70 5 0.265
Hot rolled 14.4 57.7 —0.718
As forged 39.9 272.0 —0.995
Size Factor, k;;
For bending and torsion:
d < 8 mm; ky=1
8mm<d<250mm; k,=1.189d %7
d > 250 mm; 0.6<k,<0.75
For axial loading: k=1
Load Factor, k.
k,=0.923 axial loading, S,, < 1,520 MPa
k=1 axial loading, S,, > 1,520 MPa
k=1 bending
k.= 0.577 torsion

Temperature Factor, k;:
for T<450°C, k;= 1

Miscellaneous Effects Factor, k,: Used to account for strength
reduction effects such as corrosion, plating, and residual
stresses. In the absence of known effects, use k,= 1.

TORSION
Torsion stress in circular solid or thick-walled (t > 0.1 r)
shafts:

_Ir

=T

where J = polar moment of inertia (see table at end of
STATICS section).
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TORSIONAL STRAIN
Yoo = Aizmit0 r(Ad/Az) = r(dd/dz)

The shear strain varies in direct proportion to the radius, from
zero strain at the center to the greatest strain at the outside of
the shaft. d§/dz is the twist per unit length or the rate of twist.

Tpz = G"{d)z = Gr(d(])/dz)
T = G(dd/dz) [r*dA = GI(dd/dz)
A

_ I 4 IL
¢ —/o GJdZ =G where
¢ = total angle (radians) of twist,
T = torque, and
L = length of shaft.

T/ gives the twisting moment per radian of twist. This is
called the torsional stiffness and is often denoted by the
symbol & or c.

For Hollow, Thin-Walled Shafts

_ T
T= AT where
t = thickness of shaft wall and
4,, = the total mean area enclosed by the shaft measured to
the midpoint of the wall.
BEAMS

Shearing Force and Bending Moment Sign Conventions

1. The bending moment is positive if it produces bending of
the beam concave upward (compression in top fibers and
tension in bottom fibers).

2. The shearing force is positive if the right portion of the
beam tends to shear downward with respect to the left.

NEGATIVE BENDING

=

¢ POSITIVE BENDING

e

POSITIVE SHEAR NEGATIVE SHEAR

+ Timoshenko, S. and Gleason H. MacCullough, Elements of Strengths of Materials, K. Van Nostrand
Co./Wadsworth Publishing Co., 1949.



The relationship between the load (g), shear (V), and moment
(M) equations are:

V=

dx
= ¥=[7[-q(x)]dx

M, — M, = j:zV(x)dx

Stresses in Beams
€. = —)/p, where

p = the radius of curvature of the deflected axis of the
beam, and
y = the distance from the neutral axis to the longitudinal

fiber in question.

Using the stress-strain relationship ¢ = E¢,
Axial Stress: =—FEy/p, where

X

o6, = the normal stress of the fiber located y-distance from
the neutral axis.

1/p = MAEI), where

M = the moment at the section and
1 = the moment of inertia of the cross section.
.= — My/l, where
y = the distance from the neutral axis to the fiber location

above or below the axis. Let y = ¢, where ¢ = distance
from the neutral axis to the outermost fiber of a
symmetrical beam section.

G, =+ Mc/l

Let §'=I/c: then, 6, =+ M/S, where
S = the elastic section modulus of the beam member.
q="VQ/ and

Transverse shear stress:  T,,= VOAID), where

Transverse shear flow:

q = shear flow,
Ty = shear stress on the surface,
= shear force at the section,
b = width or thickness of the cross-section, and
0 = A’;, where
A" = area above the layer (or plane) upon which the
desired transverse shear stress acts and
y' = distance from neutral axis to area centroid.

Deflection of Beams
Using 1/p = M/(EI),

EI 2 = M, differential equation of deflection curve
X
3
El% = dM(x)/dx = V
X
dly _

El=— = dV(x)/dx =— q
dx

Determine the deflection curve equation by double integration
(apply boundary conditions applicable to the deflection and/or
slope).

EI (dy/dx) = [M(x) dx

Ely = [ IM(x) dx] dx
The constants of integration can be determined from the

physical geometry of the beam.

COLUMNS
For long columns with pinned ends:
Euler’s Formula

P - T°El

cr T 2
(

, where

., = critical axial loading,

0 = unbraced column length.
substitute = 7°A4:

2
% =TI Ez, where
(0/r)
r = radius of gyration and
0/r = slenderness ratio for the column.

For further column design theory, see the CIVIL
ENGINEERING and MECHANICAL ENGINEERING
sections.
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ELASTIC STRAIN ENERGY
If the strain remains within the elastic limit, the work done during deflection (extension) of a member will be transformed into

potential energy and can be recovered.
If the final load is P and the corresponding elongation of a tension member is 9, then the total energy U stored is equal to the
work W done during loading.

U=W=Pd2
P
3
The strain energy per unit volume is
u = U/AL = 6*12E (for tension)
MATERIAL PROPERTIES
=
= : | €
Material = = =
2 < £ © S
= e = < S
=) % | < o =
Modulus of Mpsi 29.0 | 10.0 14.5 1.6
Elasticity, E
GPa 200.0| 69.0 | 100.0 | 11.0
Modulus of Mpsi 11.5 3.8 6.0 0.6
Rigidity, G GPa 80.0 | 260 | 414 41
Poisson's Ratio, v 030 | 0.33 0.21 0.33
Coefficient of 10°/F | 65| 131 67| 17
Thermal
Expansion, o 10°/C | 117|236 | 12.1| 3.0
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