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UNIAXIAL STRESS-STRAIN
Stress-Strain Curve for Mild Steel
♦	

The slope of the linear portion of the curve equals the  
modulus of elasticity.

DEFINITIONS
Engineering Strain

ε = ∆L/Lo, where
ε	 =	 engineering strain (units per unit),
∆L	 =	 change in length (units) of member,
Lo	 =	 original length (units) of member.
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Percent Reduction in Area (RA)
The % reduction in area from initial area, Ai, to final area,  
Af , is:
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Shear Stress-Strain
γ = τ/G, where

γ	 =	 shear strain,

τ	 =	 shear stress, and
G	 =	 shear modulus (constant in linear torsion-rotation 

relationship).
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E	 =	 modulus of elasticity
v	 =	 Poisson’s ratio, and
	 =	 – (lateral strain)/(longitudinal strain).
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MECHANICS OF MATERIALS

Uniaxial Loading and Deformation
σ = P/A, where

σ	 =	 stress on the cross section,
P	 =	 loading, and
A	 =	 cross-sectional area.

ε = δ/L, where
δ	 =	 elastic longitudinal deformation and
L	 =	 length of member.
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True stress is load divided by actual cross-sectional area 
whereas engineering stress is load divided by the initial area.

THERMAL DEFORMATIONS
δt = αL(T – To), where

δt	 =	 deformation caused by a change in temperature,
α	 =	 temperature coefficient of expansion,
L	 =	 length of member,

T	 =	 final temperature, and
To	 =	 initial temperature.

CYLINDRICAL PRESSURE VESSEL
Cylindrical Pressure Vessel
For internal pressure only, the stresses at the inside wall are:
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For external pressure only, the stresses at the outside wall are:
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σt	 =	 tangential (hoop) stress,
σr	 =	 radial stress,
Pi	 =	 internal pressure,
Po	 =	 external pressure,
ri	 =	 inside radius, and
ro	 =	 outside radius.
For vessels with end caps, the axial stress is:
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σt, σr, and σa are principal stresses.
♦	 Flinn, Richard A. & Paul K. Trojan, Engineering Materials & Their Applications,  

4th ed., Houghton Mifflin Co., Boston, 1990.
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When the thickness of the cylinder wall is about one-tenth or 
less of inside radius, the cylinder can be considered as thin-
walled. In which case, the internal pressure is resisted by the 
hoop stress and the axial stress.
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where t = wall thickness.

STRESS AND STRAIN
Principal Stresses
For the special case of a two-dimensional stress state, the 
equations for principal stress reduce to
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The two nonzero values calculated from this equation are 
temporarily labeled σa and σb and the third value σc is always 
zero in this case. Depending on their values, the three roots are 
then labeled according to the convention:
algebraically largest = σ1, algebraically smallest = σ3,  
other = σ2. A typical 2D stress element is shown below with 
all indicated components shown in their positive sense.
♦
To

Mohr’s Circle – Stress, 2D
To construct a Mohr’s circle, the following sign conventions 
are used.
1.	 Tensile normal stress components are plotted on the 

horizontal axis and are considered positive. Compressive 
normal stress components are negative.

2.	 For constructing Mohr’s circle only, shearing stresses 
are plotted above the normal stress axis when the pair of 
shearing stresses, acting on opposite and parallel faces of 
an element, forms a clockwise couple. Shearing stresses 
are plotted below the normal axis when the shear stresses 
form a counterclockwise couple.

The circle drawn with the center on the normal stress 
(horizontal) axis with center, C, and radius, R, where
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The two nonzero principal stresses are then:
♦	
	
	 σa = C + R
	 σb = C – R

The maximum inplane shear stress is τin = R. However, the 
maximum shear stress considering three dimensions is always 
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Hooke's Law
Three-dimensional case:

εx = (1/E)[σx – v(σy+ σz)] 	 γxy = τxy /G

εy = (1/E)[σy – v(σz+ σx)] 	 γyz = τyz /G

εz = (1/E)[σz – v(σx+ σy)] 	 γzx = τzx /G

Plane stress case (σz = 0):	
εx = (1/E)(σx – vσy)	
εy = (1/E)(σy – vσx)
εz = – (1/E)(vσx + vσy)

Uniaxial case (σy = σz = 0): 	 σx = Eεx or σ = Eε, where
εx, εy, εz = normal strain,
σx, σy, σz = normal stress,
γxy, γyz, γzx = shear strain,
τxy, τyz, τzx = shear stress,
E = modulus of elasticity,
G = shear modulus, and
v = Poisson’s ratio.

♦	 Crandall, S.H. and N.C. Dahl, An Introduction to Mechanics of Solids, McGraw-Hill, New York, 1959.
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STATIC LOADING FAILURE THEORIES
See MATERIALS SCIENCE/STRUCTURE OF 
MATTER for Stress Concentration in Brittle Materials.
Brittle Materials
Maximum-Normal-Stress Theory
The maximum-normal-stress theory states that failure occurs 
when one of the three principal stresses equals the strength 
of the material. If σ1 ≥ σ2 ≥ σ3, then the theory predicts that 
failure occurs whenever σ1 ≥ Sut or σ3 ≤ – Suc where Sut and  
Suc are the tensile and compressive strengths, respectively.
Coulomb-Mohr Theory
The Coulomb-Mohr theory is based upon the results of tensile 
and compression tests. On the σ, τ coordinate system, one 
circle is plotted for Sut and one for Suc. As shown in the figure, 
lines are then drawn tangent to these circles. The Coulomb-
Mohr theory then states that fracture will occur for any stress 
situation that produces a circle that is either tangent to or 
crosses the envelope defined by the lines tangent to the Sut and 
Suc circles.
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If σ1 ≥ σ2 ≥ σ3  and σ3 < 0, then the theory predicts that 
yielding will occur whenever
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Ductile Materials
Maximum-Shear-Stress Theory
The maximum-shear-stress theory states that yielding begins 
when the maximum shear stress equals the maximum shear 
stress in a tension-test specimen of the same material when 
that specimen begins to yield. If σ1 ≥ σ2 ≥ σ3, then the theory 
predicts that yielding will occur whenever τmax ≥ Sy /2 where 
Sy is the yield strength.
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Distortion-Energy Theory
The distortion-energy theory states that yielding begins 
whenever the distortion energy in a unit volume equals the 
distortion energy in the same volume when uniaxially stressed 
to the yield strength. The theory predicts that yielding will 
occur whenever
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The term on the left side of the inequality is known as the 
effective or Von Mises stress. For a biaxial stress state the 
effective stress becomes
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where σA and σB are the two nonzero principal stresses and σx, 
σy, and τxy are the stresses in orthogonal directions.

VARIABLE LOADING FAILURE THEORIES
Modified Goodman Theory: The modified Goodman criterion 
states that a fatigue failure will occur whenever
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where
Se	 =	 fatigue strength,
Sut	 =	 ultimate strength,
Sy	 =	 yield strength,
σa	 =	 alternating stress, and
σm	 =	 mean stress.
σmax	 =	 σm + σa

Soderberg Theory: The Soderberg theory states that a fatigue 
failure will occur whenever
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Endurance Limit for Steels: When test data is unavailable, the 
endurance limit for steels may be estimated as
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Endurance Limit Modifying Factors: Endurance limit 
modifying factors are used to account for the differences 
between the endurance limit as determined from a rotating 
beam test, S el , and that which would result in the real part, Se.

S k k k k k Se a b c d e e= l

where

Surface Factor, ka = aSut
b

Factor aSurface
Finish kpsi MPa

Exponent
b

Ground 1.34 1.58 –0.085 
Machined or 
CD

2.70 4.51 –0.265 

Hot rolled 14.4 57.7 –0.718 
As forged 39.9 272.0 –0.995 

Size Factor, kb:
For bending and torsion:

d ≤ 8 mm;	 kb = 1

8 mm ≤ d ≤ 250 mm;	 kb = . d1 189 .
eff

0 097-

d > 250 mm; 	 0.6 ≤ kb ≤ 0.75
For axial loading: 	 kb = 1

Load Factor, kc:
kc = 0.923 	 axial loading, Sut  ≤ 1,520 MPa
kc = 1 	 axial loading, Sut  > 1,520 MPa
kc = 1 	 bending
kc = 0.577 	 torsion

Temperature Factor, kd:
for T ≤ 450°C, kd = 1

Miscellaneous Effects Factor, ke: Used to account for strength 
reduction effects such as corrosion, plating, and residual 
stresses. In the absence of known effects, use ke = 1.

TORSION
Torsion stress in circular solid or thick-walled (t > 0.1 r) 
shafts:

J
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where J = polar moment of inertia (see table at end of 
STATICS section).

TORSIONAL STRAIN
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The shear strain varies in direct proportion to the radius, from 
zero strain at the center to the greatest strain at the outside of 
the shaft. dφ/dz is the twist per unit length or the rate of twist.
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φ = total angle (radians) of twist,
T = torque, and
L = length of shaft.

T/φ gives the twisting moment per radian of twist. This is 
called the torsional stiffness and is often denoted by the 
symbol k or c.
For Hollow, Thin-Walled Shafts

,A t
T
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t	 =	thickness of shaft wall and
Am	 =	the total mean area enclosed by the shaft measured to 	

	 the midpoint of the wall.

BEAMS
Shearing Force and Bending Moment Sign Conventions
1.	 The bending moment is positive if it produces bending of 

the beam concave upward (compression in top fibers and 
tension in bottom fibers).

2.	 The shearing force is positive if the right portion of the 
beam tends to shear downward with respect to the left.

♦	

♦	 Timoshenko, S. and Gleason H. MacCullough, Elements of Strengths of Materials, K. Van Nostrand

	 Co./Wadsworth Publishing Co., 1949.

POSITIVE BENDING NEGATIVE BENDING

NEGATIVE SHEARPOSITIVE SHEAR

POSITIVE BENDING NEGATIVE BENDING

NEGATIVE SHEARPOSITIVE SHEAR
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The relationship between the load (q), shear (V), and moment 
(M) equations are:
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V
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Stresses in Beams
εx = – y/ρ, where

ρ	 =	the radius of curvature of the deflected axis of the 		
	 beam, and

y	 =	the distance from the neutral axis to the longitudinal 	
	 fiber in question.

Using the stress-strain relationship σ = Eε,
Axial Stress:	 σx = –Ey/ρ, where

σx	 =	the normal stress of the fiber located y-distance from 	
	 the neutral axis.

		  1/ρ = M/(EI), where
M	 =	the moment at the section and
I	 =	the moment of inertia of the cross section.
		  σx = – My/I, where
y	 =	the distance from the neutral axis to the fiber location 	

	 above or below the axis. Let y = c, where c = distance 	
	 from the neutral axis to the outermost fiber of a 		
	 symmetrical beam section. 

	 	 σx = ± Mc/I

Let S = I/c: then, σx = ± M/S, where
S	 =	 the elastic section modulus of the beam member.
Transverse shear flow: 	 q = VQ/I and

Transverse shear stress: 	 τxy = VQ/(Ib), where
q	 =	 shear flow,

τxy	 =	 shear stress on the surface,
V	 =	 shear force at the section,
b	 =	 width or thickness of the cross-section, and

Q	 =	 A yl l, where
A′	 =	 area above the layer (or plane) upon which the 		

	 desired transverse shear stress acts and
yl	 =	 distance from neutral axis to area centroid.

Deflection of Beams
Using 1/ρ = M/(EI),
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differential equation of deflection curve2
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Determine the deflection curve equation by double integration 
(apply boundary conditions applicable to the deflection and/or 
slope).

EI (dy/dx) = ∫M(x) dx

EIy = ∫[ ∫M(x) dx] dx
The constants of integration can be determined from the 
physical geometry of the beam.

COLUMNS
For long columns with pinned ends:
Euler’s Formula
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Pcr	 =	 critical axial loading,
,	 =	 unbraced column length.
substitute I = r2A:
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r	 =	 radius of gyration and
/r, 	 =	 slenderness ratio for the column.

For further column design theory, see the CIVIL 
ENGINEERING and MECHANICAL ENGINEERING 
sections.
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ELASTIC STRAIN ENERGY
If the strain remains within the elastic limit, the work done during deflection (extension) of a member will be transformed into 
potential energy and can be recovered.
If the final load is P and the corresponding elongation of a tension member is δ, then the total energy U stored is equal to the 
work W done during loading.

U = W = Pδ/2

The strain energy per unit volume is
u = U/AL = σ2/2E 	 (for tension)

MATERIAL PROPERTIES

Material
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Mpsi 29.0 10.0 14.5 1.6 Modulus of 
Elasticity, E GPa 200.0 69.0 100.0 11.0 

Mpsi 11.5 3.8 6.0 0.6 Modulus of 
Rigidity, G GPa 80.0 26.0 41.4 4.1 

Poisson's Ratio, v  0.30 0.33 0.21 0.33
610 F− ° 6.5 13.1 6.7 1.7 Coefficient of 

Thermal
Expansion, α 610 C− ° 11.7 23.6 12.1 3.0 
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