

Common beverage can. Along with food containers, these are the most common pressure vessels. (AP/Wide World Photos)

Chapter 10: Stresses and Deformations in Cylinders

In all things, success depends on previous preparation. And without such preparation there is sure to be failure.

Confucius, Analects

Class	Type	Applications
1 (Loose)	Clearance	Where accuracy is not essential, such as in building and mining equipment
2 (Free)	Clearance	In rotating journals with speeds of 600 rpm or greater, such as in engines and some automotive parts
3 (Medium)	Clearance	In rotating journals with speeds under 600 rpm, such as in precision machine tools and precise automotive parts
4 (Snug)	Clearance	Where small clearance is permissi- ble and where mating parts are not intended to move freely under load
5 (Wringing)	Interference	Where light tapping with a hammer is necessary to assemble the parts
6 (Tight)	Interference	In semipermanent assemblies suitable for drive or shrink fits on light sections
7 (Medium)	Interference	Where considerable pressure is required for assembly and for shrink fits of medium sections; suitable for press fits on generator and motor armatures and for automotive wheels
8 (Shrink)	Interference	Where considerable bonding be- tween surfaces is required, such as locomotive wheels and heavy crankshaft disks of large engines

Table 10.1: Classes of fit.

Fundamentals of Machine Elements, 3rd ed. Schmid, Hamrock and Jacobson

Classes of Fit

Recommended Tolerances

			Hub	Shaft
Class	Allowance, a	Interference, δ	tolerance, t_{lh}	tolerance, t_{ls}
1	$0.0025d^{2/3}$		$0.0025d^{1/3}$	$0.0025d^{1/3}$
2	$0.0014d^{2/3}$	_	$0.0013d^{1/3}$	$0.0013d^{1/3}$
3	$0.0009d^{2/3}$		$0.0008d^{1/3}$	$0.0008d^{1/3}$
4	0.000	_	$0.0006d^{1/3}$	$0.0004d^{1/3}$
5		0.000	$0.0006d^{1/3}$	$0.0004d^{1/3}$
6	<u>—</u>	0.00025d	$0.0006d^{1/3}$	$0.0006d^{1/3}$
7		0.0005d	$0.0006d^{1/3}$	$0.0006d^{1/3}$
8	_	0.0010d	$0.0006d^{1/3}$	$0.0006d^{1/3}$

Table 10.2: Recommended tolerances in *inches* for classes of fit.

Recommended Tolerances

			Hub	Shaft
Class	Allowance, a	Interference, δ	tolerance, t_{lh}	tolerance, t_{ls}
1	$0.0073d^{2/3}$	<u></u>	$0.0216d^{1/3}$	$0.0216d^{1/3}$
2	$0.0041d^{2/3}$	_	$0.0112d^{1/3}$	$0.0112d^{1/3}$
3	$0.0026d^{2/3}$		$0.0069d^{1/3}$	$0.0069d^{1/3}$
4	0.000	_	$0.0052d^{1/3}$	$0.0035d^{1/3}$
5	<u> </u>	0.000	$0.0052d^{1/3}$	$0.0035d^{1/3}$
6	<u>—</u>	0.00025d	$0.0052d^{1/3}$	$0.0052d^{1/3}$
7		0.0005d	$0.0052d^{1/3}$	$0.0052d^{1/3}$
8	<u> </u>	0.0010d	$0.0052d^{1/3}$	$0.0052d^{1/3}$

Table 10.3: Recommended tolerances in millimeters for classes of fit.

Recommended Shaft and Hub Diameters

	Hub diameter		Shaft diameter	
Type	Maximum,	Minimum	Maximum	Minimum
of fit	$d_{h,\max}$	$d_{h,\mathrm{min}}$	$d_{s,\max}$	$d_{s, \min}$
Clearance	$d + t_{lh}$	d	d - a	$d - a - t_{ls}$
Interference	$d + t_{lh}$	d	$d + \delta + t_{ls}$	$d + \delta$

Table 10.4: Maximum and minimum diameters of shaft and hub for two types of fit.}

Thin-walled Pressure Vessel

Figure 10.1: Internally pressurized thin-walled cylinder. (a) Stress element on cylinder; (b) stresses acting on element.

Criterion for thin vs. thick wall:

$$\frac{d_i}{t_h} > 40$$

Stresses for thin-walled cylinder:

$$\sigma_{\theta} = \frac{p_i r}{t_h}$$

$$\sigma_z = \frac{p_i r}{2t_h}$$

$$\sigma_r = p$$

Internally Pressurized Cylinder

Figure 10.2: Front view of internally pressurized, thin-walled cylinder.

Pressurized Cylinder

Figure 10.3: Complete front view of thick-walled cylinder internally and externally pressurized. (a) With stresses acting on cylinder; (b) detail of stresses acting on element.

Figure 10.4: Cylindrical coordinate stress element before and after deformation.

Figure 10.5: Internally pressurized, thick-walled cylinder showing circumferential (hoop) and radial stress for various radii.

Internally Pressurized Cylinder

Stress distribution:

$$\sigma_{r} = rac{p_{i}r_{i}^{2}\left(1 - rac{r_{o}^{2}}{r^{2}}
ight)}{r_{o}^{2} - r_{i}^{2}}$$
 $\sigma_{ heta} = rac{p_{i}r_{i}^{2}\left(1 + rac{r_{o}^{2}}{r^{2}}
ight)}{r_{o}^{2} - r_{i}^{2}}$

Maxima occur at $r = r_i$:

$$\sigma_{r_{\text{max}}} = -p_i$$

$$\sigma_{\theta_{\text{max}}} = p_i \left(\frac{r_o^2 + r_i^2}{r_o^2 - r_i^2} \right)$$

Radial displacement:

$$\delta_r = \frac{p_i r_i}{E} \left(\frac{r_o^2 + r_i^2}{r_o^2 - r_i^2} + \nu \right)$$

Normali stress Tension A Radius, r Compression

Externally Pressurized Cylinder

Stress distribution:

$$\sigma_r = \frac{p_o r_o^2}{r_o^2 - r_i^2} \left(\frac{r_i^2}{r^2} - 1 \right)$$

$$\sigma_\theta = -\frac{p_o r_o^2}{r_o^2 - r_i^2} \left(\frac{r_i^2}{r^2} + 1 \right)$$

Maxima:

$$\sigma_{r,\max} = -p_o$$

$$\sigma_{\theta,\text{max}} = -\frac{2r_o^2 p_o}{r_o^2 - r_i^2}$$

Figure 10.6: Externally pressurized, thick-walled cylinder showing circumferential (hoop) and radial stress for various radii.

Design Procedure 10.1: Stress Analysis of Thick-Walled Cylinders

A common design problem is to determine the largest permissible external and/or internal pressure to which a cylinder can be subjected without failure. Axial stresses, if present, are negligibly small. The following design procedure is useful for such circumstances:

1. For internal pressurization, both the radial and circumferential stresses are largest at the inner radius. The von Mises stress for this plane stress case can be shown to be

$$\sigma_e=p_i\sqrt{\frac{3r_o^4+r_i^4}{\left(r_o^2-r_i^2\right)^2}}$$
 so that the allowable internal pressure is, from Eq.~(6.8), $\ p_i=\frac{S_y}{n_s}\frac{r_o^2-r_i^2}{\sqrt{3r_o^4+r_i^4}}$

2. For external pressurization, it can be shown that the larger von Mises stress occurs at the inner radius, with the stresses of σ_r = 0 and σ_θ given by Eq. (10.32). This yields an expression of allowable external pressure of:

$$p_o = \frac{S_y}{n_s} \frac{r_o^2 - r_i^2}{2r_o^2}$$

3. For combined internal and external pressurization, Eqs. (10.20) and (10.22) need to be substituted into a failure criterion from Ch. 6, such as the DET given for plane stress in Eqs. (6.10) and (6.11).

Rotating Cylinder

Figure 10.7: Stresses in rotating cylinder with central hole and no pressurization.

Stresses:

$$\sigma_{\theta} = \frac{3+\nu}{8}\rho\omega^{2} \left[r_{i}^{2} + r_{o}^{2} + \frac{r_{i}^{2}r_{o}^{2}}{r^{2}} - \frac{1+3\nu}{3+\nu}r^{2} \right]$$

$$\sigma_{r} = \frac{3+\nu}{8}\rho\omega^{2} \left(r_{i}^{2} + r_{o}^{2} - \frac{r_{i}^{2}r_{o}^{2}}{r^{2}} - r^{2} \right)$$

$$\sigma_{\theta,\text{max}} = \frac{3+\nu}{4}\rho\omega^2 \left[r_o^2 + \frac{r_i^2(1-\nu)}{3+\nu} \right]$$
$$\sigma_{r,\text{max}} = \frac{3+\nu}{8}\rho\omega^2 \left(r_i - r_o \right)^2$$

Rotating Solid Cylinder

Figure 10.8: Stresses in rotating solid cylinder with no pressurization.

Fundamentals of Machine Elements, 3rd ed.
Schmid, Hamrock and Jacobson

Stresses:

$$\sigma_{\theta} = \frac{3+\nu}{8}\rho\omega^{2} \left[r_{o}^{2} - \frac{r^{2}(1+3\nu)}{3+\nu}\right]$$
$$\sigma_{r} = \frac{3+\nu}{8}\rho\omega^{2} \left(r_{o}^{2} - r^{2}\right)$$

$$\sigma_{\theta,\text{max}} = \sigma_{r,\text{max}} = \frac{3+\nu}{8} \rho(r_o\omega)^2$$

Interference Fit

Figure 10.9: Side view showing interference in press fit of hollow shaft to hub.

For hub and shaft of the same material, and a solid shaft:

$$\delta_r = \frac{2r_f p_f r_o^2}{E\left(r_o^2 - r_f^2\right)}$$

Torque that can be transmitted:

$$T = P_{\max} r_f = 2\pi \mu r_f^2 l p_f$$

Interference Fit

Figure 10.10: Front view showing (a) cylinder assembled with an interference fit and (b) hub and hollow shaft disassembled (also showing interference pressure).

Example 10.10

Figure 10.11: (a) Block placed between two rigid jaws of clamp, and (b) associated forces.

Die Casting Machine

Figure 10.11: Schematic illustration of a die casting machine. *Source:* From Kalpakjian and Schmid [2010].